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ABSTRACT 

Photosynthetic rate (Pn) of plants is determined by environment, such as temperature, carbon dioxide (CO2), and light. 

Light environment includes light intensity (LI) and light quality (LQ). It is important to build a predictive model of 

protected crops’ Pn where LI, LQ and other environmental factors are comprehensively considered. In this paper, 

cucumber was taken as experimental material, and a nested experiment was designed to measure the Pn under different 

temperature, CO2 concentration ([CO2]), LI and LQ. On the bases of these measured data, a predictive model of Pn was 

built by using support vector regression (SVR) algorithm. The performance of training set with coefficient of 

determination (DC) of 0.9990, and the root-mean-square error (RMSE) of 0.0478 μmol·m-2·s-1 demonstrated that the 

model is highly accurate after training. The validation results of predictive model showed that the fitting slope was 

1.0015, and the intercept was 0.0223 between measured and predicted Pn values, which indicated that the model was 

accurate to calculate the Pn of plants under different environment. 
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1. INTRODUCTION 

Photosynthetic reaction, a core reaction for matter accumulation of plants, is closely related to crop yield and quality1. 

Photosynthetic rate (Pn) would be affected by light, carbon dioxide (CO2) and temperature in greenhouse. Light is not 

only the light intensity (LI)2-4, but also the light quality (LQ, the ratio of red light to total light intensity)5. In the research 

of plant photosynthetic rate prediction model, Ye et al.6 proposed different types of light response models on the basis of 

traditional photosynthetic physiological models, which laid a good foundation for photosynthetic model research. 

However, many physiological parameters are hard to determine in these models. These models cannot be applied to 

protected horticultural environmental regulation, directly. In recent years, predictive model of Pn have been proposed, 

but the coupling relationship between multiple environmental factors and plant Pn was not considered in the early 

models7. For this reason, scholars have established a Pn prediction model with multi environmental factors as inputs by 

using multiple non-linear regression method, which improved the accuracy and versatility of the Pn prediction model8, 9. 

But it still had insufficient accuracy in the fitting of multi-dimensional photosynthetic data. Using intelligent algorithm 

could effectively improve the accuracy of the model, and it has become a new research hotspot10, 11. However, most of 

the existing predictive models of Pn based on intelligent algorithms had not considered the difference of photosynthetic 

capacity caused by different LQ in the light environment.  

Related studies showed that the growth and development of crops was related to the LI and LQ. Some results showed 

that blue light and red light had different effects on Photosynthetic regulation12. Red light could inhibit photosynthetic 

electron transfer, while blue light could effectively alleviate the above inhibition. The biological effects of different 

wavelengths of light on the growth of crops are different. Red light could correspond to the light wavelength needed for 

chlorophyll to transition from the ground state to the first excited state; Blue light could correspond to the light 

wavelength needed for chlorophyll to transition to a higher excited state. The LQ would affect the growth and 

development of crops significantly. Integrating the LQ to control the greenhouse light environment can optimize the 

control effect and improve the photosynthetic capacity and yield of crops to a certain extent, which is one of the keys to 

realize the efficient production of crops. 

In this study, cucumber was selected as the experimental object, and the multi factor nested experiment was designed to 

obtain the data. The predictive model of Pn was constructed by using SVR algorithm, which would complete the unified 
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prediction of cucumber leaves’ Pn in different environments. This would provide the foundation for the regulation of 

environmental factors in protected agriculture. 

2. MATERIALS AND METHODS 

2.1. Experimental materials 

The data for model building were collected during the experiment of Pn measurement. This experiment was conducted at 

College of Mechanical and Electronic Engineering, Northwest A&F University, from December 1, 2019 to January 10, 

2020. The cucumber for experiment was “Bonai 14-3”. The cucumber seeds were soaked in a petri dish for a week to 

make them swell and germinate, and then they were planted in 50-hole trays. After these cucumber seedlings grew three 

weeks, they were planted into flowerpots with size of 15×15×10cm. These seedlings were grown in a growth chamber 

(MD1400, Sinde, Netherlands). The environment of climate chamber was set as follows: the light period of day and night 

was 14 and 10 hours; the temperature of day and night was 25 and 16°C; the relative humidity of day and night was 60% 

and 50%; the [CO2] was 400 μmol·m-2·s-1. When cucumber seedlings grew five leaves, the fluorescence detection and Pn 

collection were carried out on the third leaf. Before the experiment, the Fv/Fm of cucumbers were detected by 

MINI-PAM-II Portable Fluorometer (WALZ company, Germany) to choose leaves with similar chlorophyll fluorescence. 

And then, the Pn of these leaves under different environment were determined by a portable photosynthesis system 

(LI-6800, USA). The data collection processes were in Figure 1. 

2.2. Experimental methods 

The chlorophyll fluorescence parameter Fv/Fm of leaves were measured to determine the leaf state, and 90 cucumber 

seedlings with the same or similar Fv/Fm of the third leaf were selected to measure Pn. The test leaves should be fully 

dark adapted for 20 minutes by dark blade clamp at the position of Pn data to be collected. Then, the dark blade clamp 

was opened, and the minimum fluorescence parameter Fo of the test sample was measured under the measurement light 

(wavelength of 470 nm, LI of 0.05 μmol·m-2·s-1). After that, the sample was irradiated with saturated pulsed light 

(wavelength of 470 nm, LI of 6000 μmol·m-2·s-1) for 300 ms to obtain the maximum fluorescence parameter Fm. Fv/Fm 

could be calculated by: 
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Figure 1. Methods and data collection processes. 
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Air temperature, [CO2], LI and LQ were selected to design a nested experiment to measure the Pn of the living third 

leaves of cucumber seedlings. The experiment was carried out from 9:00 to 17:30 every day, and the data was measured 

by using LI-6800 to control many environmental factors, such as temperature, [CO2], and light of leaves. During the 

nested experiment, the flow rate was set to 500 μmol·s−1 in flow control module, the fan speed was set to 1000 r/min in 

fan control module, and the moisture control module was used to set the relative humidity of 50%. The gradients of the 

temperature parameter are set to 18, 21, 24, 27, 30, 33 °C. The gradients of the [CO2] parameter are set to 300, 700, 1000 

μmol·mol−1. The gradients of the LQ parameter are set to 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9. The gradients of the LI 

parameter are set to 0, 30, 75, 150, 200, 300, 500, 600, 700, 800, 1000, 1200, 1400, 1600, 1800 μmol·m-2·s-1. In the 

experiment, Pn was collected by the light response program of LI-6800. Before the measurement, the temperature, [CO2], 

and LQ should be set by respective modules, and the LI of chamber was set to 1800 μmol·m -2·s-1 to make leaves be 

adapted to light. After the Pn was stable, the light response program was started to record photosynthetic data. 1890 

groups (15×3×6×7) of experimental data were obtained. 

2.3. Predictive model of photosynthetic rate 

In the study of predictive model of Pn, SVR algorithm were widely used. In this paper, the data obtained from the 

experiment were combined with SVR algorithm to create a predictive model of Pn for cucumber. Temperature, [CO2], LI, 

and LQ were taken as input, and Pn was taken as output. The process of model building was shown in Figure 2. 

 

Figure 2. The process of model building. 
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of parameters. As a kernel function, RBF could convert the data to a higher dimensional space. Then, some nonlinear 

problem that could not be solved in low dimensional space can be linear problem in high dimensional space. The support 

vector could be easy to obtained using RBF kernel. Finally, the final regression hyperplane was determined by the 

support vector. For SVR algorithm, it would be coupled to affect the model performance that the kernel parameter g and 

penalty coefficient c changed. According to the results of multiple training of the grid validation method, it could be 

obtained that the generalization ability of the model was the best with the parameter c of 40 and g of 5. The final 

predictive model of Pn was as follows: 

𝑓(𝑋) = ∑ (�̂�𝑖
𝑚
𝑖=1 − 𝛼𝑖)𝐾(𝑋, 𝑋𝑖) + 𝑏                      (2) 

where 𝐾(𝑋, 𝑋𝑝) = 𝑒𝑥 𝑝 (−
‖𝑋−𝑋𝑝‖2

2𝛿2
) = exp(−𝑔 ∙ ‖𝑋 − 𝑋𝑝‖2), which is RBF kernel function; X is the original data; Xp 

is the support vector; �̂�𝑖 , 𝛼𝑖 are Lagrange Multiplier in solving process; b is the bias of model. 

3. RESULTS 

3.1. Photosynthetic rate results 

The partial results of Pn test of temperature, [CO2], LI and LQ coupling are shown in Figure 3. Pn is directly affected by 

light, and also affected by temperature and [CO2].   

 

Figure 3. The partial results of experiment. 

3.2. Prediction results 

To verify the performance of SVR model, the other machine learning algorithm of random forest (RF) and a nonlinear 

regression (NLR) algorithm of quartic cubic polynomial regression are selected to fit the same training set data. The 

results are shown in Table 1. Among them, SVR model had the highest coefficient of determination (DC), which was 

0.9990. Meanwhile, the maximum absolute error (MAE) of 0.6214 µmol·m-2·s-1and root mean square error (RMSE) of 

0.0478 µmol·m-2·s-1 were all the lowest in these three models. Accordingly, SVR algorithm had advantages in building 

photosynthetic model. 
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Table 1. Comparison of the performance of three models. 

Models DC MAE RMSE 

SVR 0.9990 0.6214 µmol·m-2·s-1 0.0478 µmol·m-2·s-1 

RF 0.9984 1.6819 µmol·m-2·s-1 0.0828 µmol·m-2·s-1 

NLR 0.9359 4.8346 µmol·m-2·s-1 3.2154 µmol·m-2·s-1 

To further verify the generalization ability of the predictive model of Pn for unknown data, the model validation was 

used to calculate the DC and RMSE from the prediction set data. As shown from Table 1, the largest DC of 0.9974 and 

the smallest RMSE of 0.1294 µmol·m-2·s-1 shows the best performance of SVR model. The fitting results between the 

predicted value and the real value of the model are shown in Figure 4. The slope of SVR model is 1.0015, which is the 

nearest of 1, and the intercept is 0.0223, which is the closest to 0. This indicated that the model had accurate results and 

strong generalization ability. 

 

Figure 4. Fitting results of the models: (a), (b) and (c) are fitting graphs of real Pn and predictive Pn of SVR, RF and NLR algorithm 

respectively. 

4. DISCUSSION 

The [CO2] in the environment will affect the stomatal conductance of crop leaves, which could lead to the change of 

photosynthesis. Li et al.13 studied the effect of [CO2] on stomatal conductance of soybean leaves. The results showed that 

the stomatal conductance of crop leaves decreased with the increase of [CO2]. To explore the effect of [CO2] on crop 

stomatal conductance, the stomatal conductance of cucumber under different [CO2] was compared, and the results are 

shown in Figure 5. 

 

Figure 5. Variation of stomatal conductance of cucumber. (a): the temperature was 21°C and the LQ is 0.4; (b): the temperature was 

30°C and the LQ is 0.5. 

It could be seen from Figure 5 that the stomatal conductance of cucumber leaves decreased with the increase of [CO2]. It 

further showed that cucumber would open its own stomata at low [CO2] to absorb CO2 better and carry out 
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photosynthesis; When [CO2] increased, cucumber leaves would close part of stomata to regulate their own 

photosynthesis. It is proved that the supplement of blue light can promote the stomatal opening of crop leaves. Under red 

light, the stomatal conductance and photosystem II activity of leaves decreased significantly, and the supplement of blue 

light could maintain the photosystem II activity and drive photosynthesis. In addition, blue light can rapidly and 

reversibly adjust the stomatal aperture, thus changing the stomatal conductance of crops. CBC (including CBC1 and 

CBC2 kinases) can integrate CO2 and blue light signals and promote stomatal opening under the action of low 

concentration of CO2 and blue light. Therefore, when the [CO2] in the environment increases, crops will adjust 

photosynthesis by closing stomata, and the required blue light will decrease, that is, the LQ will increase; when the [CO2] 

in the environment is low, crops will open their stomata, and the required blue light will increase, that is, the LQ will 

decrease. 

Temperature, LI and other environmental conditions can also affect the stomatal conductance of crop leaves. When the 

environmental temperature is higher, the transpiration of crop leaves becomes stronger. By closing the stomata and other 

adjustment, the water loss can be prevented. At this time, the blue light required for photosynthesis of cucumber leaves 

decreases and the LQ increases. The demand for red and blue light in crops may also be closely related to the activities of 

various enzymes and plant hormones, which is caused by the coupling effects of various factors. Therefore, the coupling 

dynamic control of LQ and LI is the key to efficient light supplement in facility environment. 
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