Ground-based and Airborne Instrumentation for Astronomy IX

Christopher J. Evans
Julia J. Bryant
Kentaro Motohara
Editors

17–22 July 2022
Montréal, Québec, Canada

Sponsored and Published by
SPIE

Volume 12184
Part One of Three Parts
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:
Author(s), "Title of Paper," in Ground-based and Airborne Instrumentation for Astronomy IX, edited by Christopher J. Evans, Julia J. Bryant, Kentaro Motohara, Proc. of SPIE 12184, Seven-digit Article CID Number (DD/MM/YYYY); (DOI URL).

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510653498

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)
SPIE.org
Copyright © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE).

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of fees. To obtain permission to use and share articles in this volume, visit Copyright Clearance Center at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: A unique citation identifier (CID) number is assigned to each article in the Proceedings of SPIE at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:
• The first five digits correspond to the SPIE volume number.
• The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-12, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

Conference Committee

Part One

MAJOR OBSERVATORIES I

12184 02 Instrumentation at the Subaru Telescope [12184-1]

12184 03 Ten years of the ESO paranal instrumentation programme [12184-2]

12184 05 Innovations and advances in instrumentation at the W. M. Keck Observatory, vol. II [12184-4]

12184 06 Current and future instrumentation at Gemini Observatory [12184-5]

MAJOR OBSERVATORIES II

12184 07 Laboratory performance and commissioning status of the SALT NIR integral field spectrograph [12184-6]

12184 09 MAVIS: imager and spectrograph [12184-8]

12184 0A CUBES: the Cassegrain U-band Efficient Spectrograph [12184-9]

MAJOR OBSERVATORIES III

12184 0C FRIDA: diffraction-limited imaging and integral-field spectroscopy for the GTC [12184-12]

12184 0E Detailed performance of the preliminary optical design of the Gemini multi-object infrared integral-field spectrograph [12184-14]

12184 0F A near-IR imager for the Gemini InfraRed Multi-Object Spectrograph (GIRMOS) [12184-15]

MAJOR OBSERVATORIES IV

12184 0H EIFIS: a modular extreme integral field spectrograph for the 10.4m GTC [12184-17]
Design of SCALES: a 2-5 micron coronagraphic integral field spectrograph for Keck Observatory [12184-18]

WIDE-FIELD IMAGERS

Rubin Observatory Commissioning Camera: summit integration [12184-19]

The HR image slicer for GNIRS at Gemini North: optical design and performance [12184-11]

Commissioning, on sky performance and first operations of JPCam, a 1.2 Gpixel camera for the wide-field 2.6m Javalambre Survey Telescope [12184-22]

Conceptual design of the Keck Wide Field Imager (KWFI) [12184-23]

TIME DOMAIN/MULTI-MESSENGER INSTRUMENTATION

Progress on the SOXS transients chaser for the ESO-NTT [12184-24]

Concept and design of a next-generation optical sensor for IceCube-Gen2 [12184-27]

The mosaic CMOS wide field camera for transneptunian automatic occultation survey [12184-28]

AIRBORNE & SOLAR INSTRUMENTATION

Enhancing the accuracy of solar polarimetry by coalescing slow and fast modulation: method description and first performance tests [12184-29]

The upgraded GREGOR infrared spectrograph [12184-30]

The EXoplanet Climate Infrared TElescope (EXCITE) [12184-31]

MOS I

The DESI instrument [12184-33]

TAIPAN starbugs: commissioning and the start of science observations [12184-34]

Prime Focus Spectrograph (PFS) for the Subaru Telescope: its start of the last development phase [12184-36]
MOS II

12184 12 MOONS – Multi Object spectroscopy for the VLT: overview and instrument integration update [12184-38]

12184 13 VIRUS2: a next generation replicated integral field spectrograph with wide field and broad wavelength coverage [12184-39]

12184 14 4MOST: the 4-metre multi-object spectroscopic telescope project in the assembly, integration, and test phase [12184-40]

12184 15 The Magellan infrared multi-object spectrograph project: 2022 update [12184-41]

12184 17 MANIFEST@GMT science overview: a multi-interface, multi-mode instrument science and simulations [12184-70]

MOS III

12184 19 What could KIDSpec, a new MKID spectrograph, do on the ELT? [12184-329]

12184 1A A high resolution multi-object spectrograph for the VLT: pre-concept design [12184-44]

12184 1B MSE: Instrumentation for a massively multiplexed spectroscopic survey facility [12184-45]

12184 1C Multi-object spectroscopic capability at the Canada France Hawaii Telescope: the MSE pathfinder [12184-46]

HIGH-RESOLUTION SPECTROGRAPHS I

12184 1D Final integration of the Gemini High-Resolution Optical Spectrograph (GHOST) spectrograph [12184-48]

12184 1E Science commissioning and first results from the next generation Gemini High Resolution Optical Spectrograph (GHOST) [12184-47]

12184 1F CRIRES* on sky: high spectral resolution at infrared wavelength enabling better science at the ESO VLT [12184-49]

12184 1G MAROON-X: the first two years of EPRVs from Gemini North [12184-50]

12184 1H First light of NIRPS, the near-infrared adaptive-optics assisted high resolution spectrograph for the ESO 3.6m [12184-51]
HIGH-RESOLUTION SPECTROGRAPHS II

12184 1I	On-sky demonstration at Palomar Observatory of the near-IR, high-resolution VIPA spectrometer [12184-52]
12184 1J	20 GHz astronomical laser frequency comb with super-broadband spectral coverage [12184-53]
12184 1K	Astrophotonic solutions for spectral cross-correlation techniques [12184-54]

HIGH-RESOLUTION SPECTROGRAPHS III

12184 1O	System integration of the Potsdam Arrayed Waveguide Spectrograph (PAWS) [12184-58]
12184 1P	The final design of the iLocater spectrograph: an optimized architecture for diffraction-limited EPRV instruments [12184-59]
12184 1Q	RISTRETTO: high-resolution spectroscopy at the diffraction limit of the VLT [12184-60]
12184 1R	Fiber-fed high-resolution infrared spectroscopy at the diffraction limit with Keck-HISPEC and TMT-MODHIS: status update [12184-61]

HIGH-SPATIAL RESOLUTION INSTRUMENTS

12184 1S	Upgrading the high contrast imaging facility SPHERE: science drivers and instrument choices [12184-62]
12184 1T	GPI 2.0: upgrade status of the Gemini Planet Imager [12184-63]
12184 1U	MiRAC-5: a ground-based mid-IR instrument with the potential to detect ammonia in gas giants [12184-64]
12184 1W	Phase II of the Keck Planet Imager and characterizer: system-level laboratory characterization and preliminary on-sky commissioning [12184-66]

ELT INSTRUMENTATION I

12184 1Y	Science instrumentation progress at the Giant Magellan Telescope [12184-68]
12184 20	HARMONI at ELT: overview of the capabilities and expected performance of the ELT's AO assisted integral field spectrograph [12184-71]
12184 21	Status update on the development of METIS, the mid-infrared ELT imager and spectrograph [12184-72]
ELT INSTRUMENTATION II

12184 23 Design and development of WFOS, the Wide-Field Optical Spectrograph for the Thirty Meter Telescope [12184-74]

12184 24 ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction [12184-75]

12184 26 The Planetary Systems Imager for TMT: overview and status [12184-77]

POSTER SESSION: AIRBORNE & SOLAR INSTRUMENTATION

12184 27 Optical alignment and performance evaluation of the Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE III [12184-78]

12184 28 Supporting Parker Solar Probe mission with Goode Solar Telescope at Big Bear Solar Observatory [12184-79]

12184 29 Design and testing of a low-resolution NIR spectrograph for the EXoplanet Climate Infrared Telescope [12184-80]

12184 2A IBIS 2.0: optical layout and polarimetric unit of the Interferometric Bidimensional Spectrometer 2.0 [12184-81]

12184 2B Sunrise chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE III: thermal-vacuum test of the SCIP optical unit [12184-82]

12184 2F End-to-end tests of the TuMag instrument for the SUNRISE III mission [12184-87]

12184 2G TuMag for SUNRISE III mission: development of the optical unit of an imaging spectropolarimeter [12184-88]

12184 2H Daniel K. Inouye Solar Telescope’s heat stop [12184-89]

12184 2I The design and development status of the cryogenic receiver for the EXoplanet Climate Infrared Telescope (EXCITE) [12184-90]

POSTER SESSION: ELT INSTRUMENTATION

12184 2J HARMONI at ELT: opto-mechanics of the IFS pre-optics at CDR [12184-91]

12184 2K The final design of the cryostat for ELT/METIS [12184-92]
Part Two

HARMONI at ELT: mechanisms of the pre-optics at CDR [12184-93]

Global to local FEA validation for complex geometries: submodeling technique applied to mechanical structures for ELT class of instrumentation [12184-96]

Finite element modeling technique: trade-off between two different FE models of a mechanical selector for astronomical instrumentation [12184-97]

GMTNIRS: preliminary optical mount design for cryogenic spectrograph [12184-98]

Preliminary design of GMTNIRS cryostat and optical bench [12184-99]

HARMONI – the Extremely Large Telescope first light integral field spectrograph: pre-optics: stray light analysis [12184-102]

The MICADO atmospheric dispersion corrector: optomechanical design, expected performance, and calibration techniques [12184-105]

Mechanical design overview for the main structure of MAORY/MORFEO [12184-106]

The MICADO first light imager for the ELT: relay optics opto-mechanical final design [12184-107]

MOSAIC on the ELT: optomechanical design of the NIR spectrograph [12184-108]

Mechanical and electronic design of the MORFEO (formerly known as MAORY) calibration unit selector [12184-109]

General overview of MORFEO (formerly known as MAORY) instrument control hardware design [12184-110]

Trade-off between different PLC based architectures of instrument control hardware for ESO ELT class of instrumentation [12184-111]

Analysis of the requirements and their impact on the design of electronic cabinets for the current generation of ESO ELT instruments [12184-112]

The MICADO main selection mechanism: final design [12184-114]

The MICADO first light imager for the ELT: a comprehensive tolerance analysis for the relay optics [12184-115]

Preliminary design of GMTNIRS electronics [12184-116]

ANDES, the high resolution spectrometer for the ELT: the UBV spectrograph module [12184-119]

The METIS warm support structure final design [12184-120]
Optimising IFU design for the Planetary Camera and Spectrograph (ELT-PCS): experimental overview and initial characterization [12184-121]

The Infrared Imaging Spectrograph (IRIS) for TMT: low wavefront error and highly reflective mirror [12184-123]

The MICADO first light imager for the ELT: final design of primary instrument support, access and supply subsystems [12184-125]

The opto-mechanical design of the GMT- Consortium Large Earth Finder (G-CLEF) spectrograph adapted for the Magellan Telescope [12184-128]

GMTNIRS optical system design [12184-129]

METIS: final design of the imager sub-system [12184-131]

Optical design, analysis, and performances of the infrared and visible channels of the warm calibration unit in METIS/ELT [12184-132]

Warm calibration unit of the mid-infrared ELT instrument METIS: overview and current status towards FDR [12184-133]

ANDES, the high resolution spectrometer for the ELT: fiber link and observing modes [12184-136]

POSTER SESSION: HIGH SPATIAL-RESOLUTION INSTRUMENTS

Structural analyses of the MAORY/MORFEO main support structure at global level for preliminary design review [12184-138]

MAVIS: preliminary design overview of the AOM control electronics [12184-139]

ELVIS: the exoplanets at LBT with a visible IFS for SHARK-VIS [12184-141]

SHARK-NIR on its way to LBT [12184-142]

The segmented pupil experiment for exoplanet detection: 6. from early design to first lights [12184-144]

The polarization aberrations of the Gemini Telescope as seen by the Gemini Planet Imager [12184-145]

The segmented pupil experiment for exoplanet detection: 5. system control and software infrastructure [12184-146]

Design of the near infrared camera DIRAC for East Anatolia Observatory [12184-149]

MAVIS: preliminary mechanical design overview of the adaptive optics module [12184-150]
On-sky performance and results of the recently upgraded ALES integral field spectrograph [12184-151]

GPI 2.0: performance of upgrades to the Gemini Planet Imager CAL and IFS [12184-152]

MAVIS: an optical design for the image slicer and spectrograph [12184-153]

Weighing exo-atmospheres: a novel mid-resolution spectral mode for SCALES [12184-154]

The Planetary Systems Imager for TMT: driving science cases and top level requirements [12184-155]

GPI 2.0: baseline testing of the Gemini Planet Imager before the upgrade [12184-157]

Spectroastrometry with photonic lanterns [12184-158]

SCALES on Keck: optical design [12184-159]

GPI 2.0: characterizing self-luminous exoplanets through low-resolution infrared spectroscopy [12184-160]

AIV of FRIDA optics: from optical manufacturing to system cryogenic qualification [12184-161]

A visible-light Lyot coronagraph for SCExAO/VAMPIRES [12184-163]

MedRes: a new MEDium RESolution integral field spectrograph for SPHERE [12184-164]

POSTER SESSION: HIGH-RESOLUTION SPECTROGRAPHS

NIRPS front-end: design, performance, and lessons learned [12184-167]

Modal noise mitigation in few-mode fibers [12184-168]

The Large Fiber Array Spectroscopic Telescope: fiber feed and spectrometer conceptual design [12184-171]

A fiber injection unit for the Keck Planet Finder: opto-mechanical design [12184-172]

NIRPS – the Near Infra-Red Planet Searcher: design, integration, and tests of the atmospheric dispersion corrector [12184-174]

The NEID port adapter: on-sky performance [12184-175]

The NEID port adapter at WIYN: on-sky fast guiding performance [12184-176]
MARVEL: optical design for the spectrograph [12184-177]

SPIP at TBL, the faithfull companion of the SPIRou spectropolarimeter at CFHT: integration, tests, and performances [12184-178]

Gemini High-Resolution Optical Spectrograph (GHOST) instrument shipping reflections [12184-180]

RISTRETTO: seven spaxel single mode spectrograph design [12184-181]

A near-infrared Fabry-Pérot for Fourier-transform spectrograph calibration [12184-182]

Development of a laser frequency comb and precision radial velocity pipeline for SALT’s HRS [12184-183]

The absorbing cells for the NIR spectrograph GIANO-B@TNG [12184-184]

The iLocater cryostat and thermal control system: enabling extremely precise radial velocity measurements for diffraction-limited spectrographs [12184-185]

On-sky performance and lessons learned from the phase I KPIC fiber injection unit [12184-186]

Echelle simulation for the High-resolution Infrared Spectrograph for Exoplanet Characterization (HISPEC) at Keck [12184-188]

NIRPS fiber-link design, performances and modal noise mitigation performances tested on sky [12184-189]

Mechanical design and integration of the Gemini High-Resolution Optical Spectrograph (GHOST) lens barrels assemblies [12184-191]

NIRPS back-end: design and performance [12184-192]

Measuring the near-IR airglow continuum with stray light reduced spectrograph [12184-195]

Tunable fibre Bragg grating arrays for spectral cross-correlation [12184-197]

HighSpec: a novel high-resolution narrow band-pass spectrograph [12184-198]

Pupil slicer at high throughput for the EXtreme Precision Spectrograph (EXPRES) at the Lowell Discovery Telescope [12184-200]

Designs of Mt. Abu faint object spectrograph and camera - echelle polarimeter (M-FOSC-EP) and its prototype: spectro-polarimeters for PRL 1.2m and 2.5m Mt. Abu Telescopes, India [12184-201]
POSTER SESSION: MAJOR OBSERVATORIES

12184 SE GIRMOS: preliminary design of the calibration system [12184-202]

12184 SF SITELLE, CFHT's visible-band, wide-field imaging Fourier transform spectrometer: from the Milky Way to clusters of galaxies [12184-204]

12184 SG Revamping of VLT-FORS control electronics with PLC systems: the final design. [12184-205]

12184 SH A UV double pass spectrograph for monitoring stellar activity for the Keck Planet finder [12184-206]

12184 SI Laboratory test of the VIS detector system of SOXS for the ESO-NTT Telescope [12184-207]

12184 SJ Development status of TAO/MIMIZUKU: performance test of the near-infrared channel [12184-208]

12184 SK GIRMOS image slicer: preliminary optical design [12184-209]

12184 SM First on-sky results of ERIS at VLT [12184-211]

12184 SO Concept for calibration of OSIRIS with a Fabry-Pérot etalon [12184-213]

12184 SP IFUM: integral field units for Magellan [12184-214]

12184 SR Ground-based support of the planned WSO-UV mission [12184-216]

12184 SS The BlueMUSE calibration unit: phase-A studies [12184-217]

Part Three

12184 ST SDSS-V local volume mapper objective optics [12184-218]

12184 SV Slit mask integral field units for the Southern African Large Telescope [12184-220]

12184 SX CRIRES+: characterisation and preparation during the pandemic [12184-223]

12184 SY Liger at Keck Observatory: image detector and IFS pick-off mirror assembly [12184-224]

12184 SZ Throughput modeling of the Planet as Exoplanet Analog Spectrograph (PEAS) [12184-225]

12184 60 Characterizing the line spread function in integral field spectrographs from ground-based telescopes [12184-226]
Hydra21: modernizing a robotic multi-object spectrograph in partnership with an industrial automation firm [12184-227]

On-sky performance of the SDSS-V wide field corrector [12184-228]

Henrietta: a low-resolution, high-precision exoatmosphere spectrograph for Las Campanas Observatory [12184-229]

Liger at Keck Observatory: design of imager optical assembly and spectrograph re-imaging optics [12184-230]

Optical design of MAAT: an IFU for the GTC OSIRIS spectrograph [12184-231]

The SCORPIO instrument: status update and path forward [12184-234]

The Crescent Nebula and its hundreds of line-of-sight stars as seen with the imaging FTS SITELLE [12184-237]

NGC 925 with SITELLE: HII region analysis [12184-238]

Discovery of planetary nebulae in NGC 4214 using SITELLE [12184-239]

Error analysis of a Stokes imaging polarimeter based on liquid crystal variable retarders [12184-242]

VLT MAVIS: optical designs of the reflective IFU and transmissive spectrograph [12184-325]

The Gemini-south high-resolution optical spectrograph (GHOST) data reduction system [12184-327]

Optimisation of the WEAVE target assignment algorithm [12184-244]

Calibration at elevation of the WEAVE fibre positioner [12184-245]

Development of the FOBOS focal plane positioner [12184-246]

Mix and match as you go: integration/test of the first beam switch module production that splits wavelengths, scrambles beams, and switches fibers for the VIRUS2 instrument [12184-247]

Overall performance of AESOP: the 4MOST fibre positioner [12184-248]

AESOP, the 4MOST fibre positioner: engineering principles [12184-249]

4MOST: MAIT of the high-resolution-spectrograph [12184-250]
12184 6P MOONS – multi object spectroscopy for the VLT: integration and tests of the field corrector and the rotating front end [12184-251]

12184 6R Prime focus spectrograph (PFS) for the Subaru Telescope: the prime focus instrument [12184-253]

12184 6T 4MOST low resolution spectrograph alignment [12184-255]

12184 6U Validating the local volume mapper acquisition and guiding hardware [12184-256]

12184 6V The assembly and alignment of the 4MOST wide field corrector [12184-257]

12184 6W Optical performance and results from the alignment and testing of the cameras for the MOONS spectrograph. [12184-258]

12184 6Y Fabrication, integration, and alignment of the VIRUS2 instrument [12184-260]

12184 70 Prime Focus Spectrograph (PFS) for the Subaru Telescope: 2D modeling of the point spread function [12184-262]

12184 72 Subaru Night-Sky Spectrograph (SuNSS): fiber cable construction [12184-264]

12184 73 4MOST calibration system: design, assembly, and testing [12184-265]

12184 74 Prime Focus Spectrograph (PFS): fiber optical cable and connector system (FOCCoS) - integration [12184-266]

12184 75 Spectro: integration and performance of the multi-object spectrograph for the Anglo-Australian Telescope [12184-267]

12184 78 Fiber optic throughput performance evaluation in multi-fiber termination connectors [12184-271]

12184 79 4MOST low resolution spectrograph performances [12184-272]

12184 7A MOONS – multi-object spectroscopy for the VLT: spectrograph performance [12184-273]

12184 7C VIRUS2: IFU and mechanical interfaces to the 2.7 m Harlan J. Smith Telescope [12184-275]

12184 7D Design and fabrication of a silicon based micro fiber holder for DOTIFS integral field unit and associated IFU tests [12184-276]

12184 7E Overview and operation of the DESI focal plane [12184-277]

12184 7H External upgrades to improve the RV precision of the APOGEE Spectrographs [12184-282]

12184 7J SDSS-V focal plane system high-precision metrology [12184-285]
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDSS-V robotic focal plane system: overview of coordinate systems and transforms</td>
<td>[12184-286]</td>
</tr>
<tr>
<td>Performance of the near-infrared camera for the Subaru Prime Focus Spectrograph</td>
<td>[12184-287]</td>
</tr>
<tr>
<td>Mauna Kea Spectrographic Explorer (MSE): a new optical design for the multi-object high-resolution spectrograph</td>
<td>[12184-290]</td>
</tr>
<tr>
<td>Hector spectrograph (spector): mechanical engineering overview</td>
<td>[12184-291]</td>
</tr>
<tr>
<td>Modeling the performance of the Hadamard transform spectral imaging technique with SAMOS: a ground-based MEMS spectrograph</td>
<td>[12184-292]</td>
</tr>
<tr>
<td>POSTER SESSION: TIME DOMAIN / MULTI-MESSENGER INSTRUMENTATION</td>
<td></td>
</tr>
<tr>
<td>NINJA: an LTAO assisted optical and near-infrared spectrograph of Subaru Telescope</td>
<td>[12184-293]</td>
</tr>
<tr>
<td>Galway Liverpool Imaging Polarimeter – GLIP: design and prototype status</td>
<td>[12184-295]</td>
</tr>
<tr>
<td>SIFAP4XP: time domain polarimetry with silicon photometers at the TNG</td>
<td>[12184-296]</td>
</tr>
<tr>
<td>SCALA update: deci-percent laboratory spectro-radiometric NIST calibration transfer to new flux reference sensors</td>
<td>[12184-297]</td>
</tr>
<tr>
<td>Design of the DDRAGO wide-field imager for the COLIBRí Telescope</td>
<td>[12184-298]</td>
</tr>
<tr>
<td>SPECTRE: a 0.4-4.2-micron IFU Spectrograph for the NASA Infrared Telescope facility</td>
<td>[12184-300]</td>
</tr>
<tr>
<td>Progress on the development of FAST: the fully automatic spectrograph for the robotic telescope PROMPT-7</td>
<td>[12184-301]</td>
</tr>
<tr>
<td>Progress on the SOXS NIR spectrograph AIT</td>
<td>[12184-302]</td>
</tr>
<tr>
<td>The internal alignment and validation of a powered ADC for SOXS</td>
<td>[12184-303]</td>
</tr>
<tr>
<td>SOXS mechanical integration and verification in Italy</td>
<td>[12184-304]</td>
</tr>
<tr>
<td>From assembly to the complete integration and verification of the SOXS common path</td>
<td>[12184-305]</td>
</tr>
<tr>
<td>The integration and alignment phase for the acquisition and guiding system of SOXS</td>
<td>[12184-306]</td>
</tr>
<tr>
<td>SOXS AIT: a paradigm for system engineering of a medium class telescope instrument</td>
<td>[12184-307]</td>
</tr>
</tbody>
</table>
ArgusSpec: rapid, autonomous spectroscopic follow-up of bright transients

The Exoplanet Transmission Spectroscopy Imager (ETSI), a new instrument for rapid characterization of exoplanet atmospheres

RIMAS: testing, and categorization of grism spectral performance

Structural design techniques applied in DDRAGO/CAGIRE instruments for the COLIBRÍ Telescope

The control system of the DDRAGO imager of COLIBRÍ, a ground follow-up telescope of the SVOM mission

Performance of the NUTTelA-TAO instrument system after two years of operation

Panoramic SETI: program update and high-energy astrophysics applications

POSTER SESSION: WIDE-FIELD IMAGERS

MOSAIC on the ELT: development of a camera prototype for the near-infrared spectrograph unit

Commissioning 'Ophi: a wide-angle finderscope for the NASA Infrared Telescope Facility

Integration/test of dual unit arrayed wide-angle camera system and its evaluation in the context of Extremely Large Telescopes

Development of an infrared all-sky camera system for cloud monitoring

Low-resolution spectroscopy mode for CASTLE Telescope with a composite grism
Conference Committee

Symposium Chairs

René Doyon, Université de Montréal (Canada)
Shouleh Nikzad, Jet Propulsion Laboratory (United States)

Symposium Co-chairs

Sarah Kendrew, European Space Agency (United States)
Satoshi Miyazaki, National Astronomical Observatory of Japan (Japan)

Conference Program Committee

Rebecca A. Bernstein, Carnegie Observatories (United States) and GMTO Corporation (United States)
Bruno V. Castilho Sr., Laboratório Nacional de Astrofísica (Brazil)
Armando Gil de Paz, Universidad Complutense de Madrid (Spain)
Livia Origlia, Istituto Nazionale di Astrofisica (Italy)
Encarnacion Romero Colmenero, South African Astronomical Observatory (South Africa)
Luc Simard, NRC - Herzberg Astronomy & Astrophysics (Canada)
Erin C. Smith, NASA Ames Research Center (United States)
Naoyuki Tamura Sr., Kavli Institute for the Physics and Mathematics of the Universe (Japan)
Joël R. D. Vernet, European Southern Observatory (Germany)
Friedrich Wöger, National Solar Observatory (United States)
Shelley A. Wright, University of California, San Diego (United States)