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ABSTRACT   

Aiming at this problem of the inertial measurement unit has high noise, low precision and large error in traditional 

attitude calculation methods, an Extended Adaptive Kalman Filter algorithm was proposed to optimize attitude data. The 

algorithm first builds a state equation model based on sensors such as gyroscope, accelerometer, and magnetometer, with 

gyroscope data as prediction data, accelerometer and magnetometer measurement values as observation data, and 

performs error compensation and filtering on the collected raw data. The Seagull Optimization algorithm (SOA) is used 

to optimize the process noise covariance and measurement noise covariance of the Extended Kalman Filter. Finally, a 

high-precision aircraft attitude estimation is obtained after Adaptive Extended Kalman Filter algorithm (AEKF) filtering. 

Both static and dynamic experiments are carried out on the flight experiment platform based on INS-DH-OEM inertial 

navigation system. Comparing and analyzing the filter effect of the traditional extended Kalman filter algorithm and the 

adaptive extended Kalman filter algorithm proposed in the paper. Through the experimental results, the algorithm 

proposed in this paper can suppress the drift of attitude angle, filter out noise and accurately track the attitude change. In 

the static test, the accuracy of the three attitude angles can be controlled within 0.1°. Compared with the traditional EKF 

algorithm, the proposed algorithm has better stability and higher accuracy. In the dynamic experiment, the gyroscope has 

good dynamic performance but with the passage of time, it will produce integral drift, and in this paper, the 

accelerometer is used to carry out a real-time drift correction of the gyroscope. The roll Angle error and pitch Angle 

error of this algorithm are within 0.5°, which is higher than that of the traditional EKF algorithm.  

Keywords: Adaptive Extended Kalman Filter, attitude estimation, inertial navigation system, Seagull Optimization 

algorithm (SOA) 

 

1. INTRODUCTION  

Inertial measurement systems are widely used due to their wide application range, good dynamics, and high accuracy of 

data acquisition. For example, in small aircraft, they are used to obtain aircraft attitude information. With the 

development trend of society, small unmanned aerial vehicles (UAVs) are playing a huge role in surveying and mapping, 

three-dimensional real scene, land planning, public security maintenance, disaster monitoring, forestry investigation, 

smart water conservancy, digital city, emergency rescue and other fields. 
[1][2]

 Due to the wide application of UAVs, it is 

inevitable that they will be used in the harsh environment with extremely poor signals and low visibility, such as high 

altitude, fog, heavy rain, heavy snow, etc., which leads to the low operation efficiency of UAVs. Therefore, higher 

requirements are put forward for the attitude information of the UAV. Usually, a filter algorithm is used to solve the 

attitude information to obtain high-precision, high-reliability and high-stability attitude information.          

Julier et al. (2000) 
[3]

 used a filter better than extended Kalman filter for filtering, and the accuracy effect is easier to 

achieve than EKF or Gaussian second-order filter. However, this method requires a lot of computation and is not easy to 

implement. Shin et al. (2004) 
[4]

 developed a low-cost unscented Kalman filter, a quaternion-based UKF method, which 

allows a large initial attitude error. For the inertial navigation system with a fast increase in heading error, the processing 

result is better, but the calculation is large and EKF is better than UKF when the initial attitude error is small. Sabatini et 

al. (2006) 
[5]

 designed and tested a quaternion-based orientation filter, established a specific state vector model, and 

introduced the measurement noise covariance matrix to prevent the influence of magnetic field disturbance on the 

measurement accuracy, thus improving the accuracy of positioning estimation. Rong Zhu et al. (2007) 
[6]

 proposed a 

novel estimation method based on the Kalman fusion algorithm, which adopts a new state vector containing three 
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orthogonal components of magnetic field and gravity, replacing the traditional Quaternions and Euler angles, thus 

establishing a simple linear Kalman model, the method is greatly simplified in computational complexity, and can be 

executed at a faster speed using an inexpensive microprocessor, which verifies the effectiveness of the method. Silson et 

al. (2011) 
[7]

 proposed a new fast initial coarse alignment estimation method for ship strapdown inertial attitude reference 

system. The advantage of this method is that it can deal with attitude errors effectively. The disadvantage is that only 

inertial measurement units are used for alignment, and sensor errors are not considered. Zou et al. (2014) 
[8]

 design of the 

improved Extended Kalman Filtering algorithm, using the fourth order runge kutta method to correction of gyro Angle, 

so as to correct the error of accelerometer and magnetometer data, estimate the process noise covariance of Kalman 

Filtering, so as to accurately locate gesture, but ignored the interference of the acceleration of gravity. Julier et al. (2014) 
[9]

 surveyed the state of the art in unscented techniques for nonlinear estimation and provided a number of examples to 

verify its advantages over the traditional linearization method, but there is a lack of certain experiments and evidence. 

Sheng et al. (2015) 
[10]

 proposed an algorithm for fusion of Multi sensor data, which was implemented by the strapdown 

AHRS hardware platform. The attitude angle can be corrected by PID control parameters and the attitude estimation is 

processed by the direction cosine matrix model. Zhao et al. (2015) 
[11]

 proposed the CKF algorithm, which uses the noise 

statistical estimator and has high adaptive robustness, this algorithm solved the problems of accuracy degradation and 

divergence under the condition of model uncertainty or prior noise statistics, and improved the robustness and 

adaptability of SCKF algorithm. Wang et al. (2017) 
[12]

 proposed a volumetric Kalman filter algorithm and deduced an 

augmented volumetric Kalman filter to deal with the strong nonlinearity of the INS model, effectively reducing the non-

additive value in inertial measurement. The method is better than the traditional EKF/UKF method. Lu et al. (2020) 
[13]

 

proposed an aircraft attitude information fusion method based on Extended Kalman Filter (EKF) to eliminate the 

influence of magnetic interference on attitude and heading estimation, but in the process of attitude determination, the 

linearization step of the system equation uses the Jacobian matrix to update the state transition matrix and the 

observation matrix, which has poor stability and large estimation deviation. Liu et al. (2022) 
[14]

 proposed an Adaptive 

Unscented Kalman Filter (AUKF), which uses the gradient descent method to optimize the key parameters of the 

unscented Kalman filter and without calculating the Jacobian matrix. The convergence speed is strengthened, and the 

attitude calculation accuracy and stability are very good, but the calculation amount is large, and the estimation accuracy 

is also greatly affected in complex working environments. G. Zhou 
[15-20]

 has also done a lot of research in this field. 

Considering the accuracy of attitude calculation, the influence of sensor errors and the algorithm requirements, a SOA-

optimized Adaptive Extended Kalman Filter algorithm is proposed. This method optimizes the parameters R and Q of 

the filter, and finds the exact values of the two parameters, so as to achieve the purpose of solving. The algorithm has the 

advantages of the fast global convergence, the fast operation speed and the simple implementation. Through the static 

and the dynamic experiments, the advantages of the algorithm and the traditional Kalman filter algorithm are compared 

and analyzed. The algorithm improves the accuracy and performance of attitude solution. 

2. OVERALL IMPLEMENTATION METHOD  

The SOA genetic algorithm is used to adaptively adjust the noise model parameters of the extended Kalman filter system 

to meet the requirements of the EKF algorithm model for accurate modeling. Since the model parameters of this filter are 

constantly changing over time, the optimization period of the genetic algorithm can be appropriately selected to reduce 

the calculation amount to a certain extent and optimize the filtering accuracy; through optimizing the function of SOA 

genetic algorithm, the optimal large-scale variation of parameters can be found, so as to achieve high-precision attitude 

calculation. 

The SOA genetic algorithm can iteratively obtain accurate parameters, which are the two key values R and Q of the 

extended Kalman filter, that is, the measurement noise value and the system noise value. Of course, all of these require 

repeated debugging and research through programming to get better results. The idea flow of the whole attitude 

calculation is shown in the following Fig. 1. 
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Fig. 1. Flow chart of attitude solution based on AEKF 

3. EXPERIMENT AND RESULT ANALYSIS 

This experiment is based on the Seagull Genetic algorithm 
[21] 

using the Extended Kalman Filter to solve the adaptive 

filtering. In the Windows 10 environment, the experiment is carried out through MATLAB R2014b, and the 

experimental situation is as follows. 

3.1 Experimental Platform 

In order to illustrate that the method proposed in this paper has certain advantages, the accuracy of attitude calculation is 

improved to a certain extent. In this paper, a flight experiment platform based on the INS-DH-OEM inertial navigation 

system is built, and the UAV dynamic flight experiment is carried out outdoors. This experiment uses the INS-DH-OEM 

inertial navigation system, which uses an advanced dual-antenna GNSS receiver, Honeywell HG4930 IMU, advanced 

MEMS accelerometer with 3-axis calibration full operating temperature range and a new generation of tactical grade 

MEMS gyroscope. The parameters of the inertial measurement unit are as follows: the serial port baud rate is 115200bps, 

the data output rate is 1~200HZ, the pitch/roll accuracy (static) is: 0.05°RMS, and the pitch/roll accuracy (dynamic) is: 

0.5° RMS. High-precision inertial measurement unit (including gyroscope and accelerometer), as shown in the following 

Fig. 2. 
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Fig. 2. Honeywell HG4930 IMU 

3.2 The Experiment 

The data of this experiment is from June 25, 2022, in front of the library of Yanshan Campus of Guilin University of 

Technology, Guilin City, Guangxi Zhuang Autonomous Region. using an octa-rotor UAV equipped with INS-DH-OEM 

sensor to carry out the flight experiment, data collection is read by the INS-DH-OEM high-precision inertial navigation 

system, and the data read by the sensor system within a certain period of time is selected for comparison with the attitude 

data obtained by the experimental method. 

3.3 Static Experiment 

The eight-rotor UAV is placed on the level ground, and the ideal value of the pitch angle and roll angle is 0°, as shown in 

the following Fig. 3. 

 

Fig. 3.  Octopteral drone with IMU 
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This experiment outputs normalized acceleration data, and the angle data is converted into radians and angles. After the 

Adaptive Extended Kalman Filter processing, the curve change graph of the attitude angle within 180 seconds is output. 

The actual attitude curve of the three axes is shown in the following Fig. 4. 

 

Fig.4. Three-axis actual attitude curve 

Through the Adaptive Extended Kalman Filter processing of the attitude data collected in the static state, it is found that 

compared with the ideal value of the roll angle of 0°, the actual roll angle deviation is 0.09°, and the algorithm has higher 

Compared with the ideal value of the pitch angle of 0°, the actual pitch angle deviation is 0.045°, and the calculation 

accuracy of the algorithm is high; since the magnetometer data is not included in the POS, the attitude calculation of the 

heading angle depends on Accelerometer and gyroscope, but between 20 seconds and 40 seconds, the error of 

accelerometer and gyroscope fluctuates greatly, so the calculated heading angle fluctuates greatly around 20 seconds, 

and basically remains stable in other time periods. 

3.4 Dynamic Experiment 

Let the UAV equipped with the POS experimental platform change its attitude, and select the attitude measurement data 

under dynamic conditions.  

Experiment: collect the dynamic POS data within 100 seconds, use the Adaptive Extended Kalman Filter algorithm to 

calculate the attitude, and compare the three-axis attitude angle calculated within 100 seconds with the error of the real 

three-axis attitude angle obtained by the UAV with the SOA platform installed, as shown in Fig.5. 
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Fig.5. Comparison of three-axis attitude angle results 

Analysis: Comparing the calculation result of the Adaptive Extended Kalman Filter algorithm with the real attitude angle, 

the deviation between the filter angle of roll and the real angle is within 0.2°; the deviation between the filter angle of 

pitch and the real angle is within 0.5°; and because of the POS does not contain magnetometer data, so the magnetic field 

data cannot be obtained. The true heading angle of the magnetic field is obtained by the fusion of the three-axis 

accelerometer and the gyroscope. The yaw filtering angle calculated by the Adaptive Extended Kalman Filter algorithm 

is not representative and cannot be compared. Therefore, in general, the real attitude angle curve changes can be 

accurately tracked by the Adaptive Extended Kalman Filter algorithm, but the value of the heading angle is very drifting 

and is not representative. 

4. CONCLUSION 

Aiming at the attitude solution problem of octopteral drone, in order to solve the low cost and high precision 

requirements of attitude sensor installed on UAV, in this paper, an attitude solving algorithm based on SOA algorithm 

and Adaptive Extended Kalman Filter is proposed. The method uses the SOA algorithm to adjust the parameters R and Q 

of the Extended Kalman Filter, optimizes the state prediction and estimation, and effectively reduces the sensor drift and 

noise errors in the attitude solution process. Through the static data and dynamic data collected by the UAV platform 

equipped with imu, the attitude accuracy of the proposed method is verified, and the experimental results are analyzed 

and compared in detail. Experimental results show that, compared with the traditional algorithms, the algorithm 

improves the long-term stability and accuracy of attitude solution. 
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