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ABSTRACT 

In the imaging of low-orbit moving objects, the number of detector elements in the traditional sheared-beam imaging 

(SBI) system is too great, which seriously restrict the application of SBI. In this paper, the detector array is sparse in two 

dimensions. We propose a two-dimensional sparse sampling imaging method, which emits a two-dimensional coherent 

laser array, carries more spectral information of the target at a time and receives speckle echo signals by a two-

dimensional sparse detector array for computational imaging. This method can reduce the number of detector elements 

many times. Firstly, the principle of two-dimensional sparse sampling with SBI detector array is deduced theoretically. 

Secondly, a two-dimensional spatial sparse reconstruction algorithm is investigated. The target amplitude product and 

phase difference carried by each detector array element is estimated using discrete Fourier transform, then the target 

amplitude product and phase difference of all detector array elements are matched respectively to form a complete target 

amplitude product surface and phase difference surface. The formulas of phase recovery and amplitude demodulation are 

derived. Finally, the validity and feasibility of the proposed method are verified by simulation. Compared with the 

traditional three-beam method, when the number of lasers in emission array is M×N, the number of detector elements is 

reduced to 1/(M-1)/(N-1) of the original without loss of imaging resolution. 
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1. INTRODUCTION 

The absorption, refraction, scattering and jitter of light in the atmosphere seriously affect the effectiveness of ground-

based optical imaging of space targets[1]. Traditional passive imaging methods often overcome the effects of atmospheric 

turbulence with complex adaptive optical systems. SBI is a active imaging technique, which can break through the 

aperture of the telescope to the limit of imaging resolution and enables high-resolution imaging of remote targets through 

atmospheric turbulence[2-14]. SBI system illuminates a target using three laser beams with slightly different frequencies 

arranged as an "L" in the emission plane, and receives echo signal by a detector array for computational imaging[4]. 

Using this method of small emission shear length, frequency modulation, and phase difference of the light pupil, the 

effects of atmospheric turbulence on imaging can be effeftively overcome. In the absence of adaptive optics and imaging 

lenses, target images approaching diffraction limits can be acquired[2]. SBI technology has the advantage of quasi-real-

time imaging, and has a broad prospect of application in remote moving target imaging[4]. 

The SBI system uses a discrete detector array to sample the echo signal. In the traditional three-beam imaging 

system, only the detector spacing is consistent with the emission shear length can the image be reconstructed by the 

image reconstruction algorithm[14]. In the imaging of low-orbit targets, however, if a large equivalent aperture receiving 

system is used to achieve high resolution imaging, as the number of detector elements becomes extremely large[10], the 

cost of the detector array becomes very high, and the implementation is very challenging. Therefore, it is very necessary 
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 to sparse the detector array. 

The literature [15] proposed a one dimensional sparse sampling imaging method for the SBI system, where five 

laser beams are emitted at once and the number of detector elements in the detector array can be sparse as much as half 

of the traditional three-beam imaging system. This paper proposes a two-dimensional sparse sampling imaging method, 

which extends the one-dimensional sparsity of the detector array to two-dimensional sparsity, and further reduces the 

number of detector elements. 

2. IMAGING PRINCIPLE AND METHOD 

2.1 The principle of sparse sampling in two-dimensional spatial domain 

This paper presents a sparse sampling method in two-dimensional spatial domain for SBI receiving system, and the 

schmetic diagram of the imaging system is shown in Figure 1. The coherent laser beams in a two-dimensional array are 

emitted to illumate the target, and the echo signals are received via detector array which has been sparse. Assuming that 

the number of coherent lasers is M N , the transverse and longitudinal emission shear length is ,x ys s , respectively. 

The transverse detector spacing is ( 1) xM s− , and the longitudinal detector spacing is ( 1) yN s− . When the number of 

detector elements in receiving array of the proposed imaging system is only 
1

( 1)( 1)M N− −
 of the traditional three-beam 

system, the both imaging system can achieve the same imaging resolution. 
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Figure 1. Schmetic diagram of the two-dimensional sparse sampling imaging system 

 

The optical field expression at any point ( ', ')x y  on the surface of the target is[15]: 

1 1

0 0

( ', ', ) exp[i( )]
M N

ij ij ij ij

i j

U x y t E t
− −

= =

= − k r ,                                                              (1) 

where ijE , ij  is the amplitude and angular frequency of the ( ), thi j  beam of light respectively. The laser frequency is 

set according to Golomb ruler[16]. ijk  is the wave number. ijr  is the displacement vector of the laser transmit aperture 

and the target surface. The scalar values of ijr  is expressed as follows: 

2 2 2( ' ) ( ' )ij x yr R x i s y j s= + −  + −  ,                                                            (2) 

where R is the imaging distance. 

Since 
2 2 2 2 2 2' ' , x yR x y R s s+ + , the following expression is derived: 
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Substituting equation (3) into equation (1) gives 
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According to the Fraunhofer diffraction principle, the scattering field formed by the laser on the plane of the 

detector array through a diffuse reflection target is as follows: 
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where ( ', ')o x y  is a reflectivity function of the target. ( )u x R= , ( )v y R= .   is the laser wavelength. ( ),O u v  is 

the target spectrum, 0 ( , )A u v  is the wavefront amplitude, ( , )u v  is the wavefront phase. 

( )0 ( ) ( ),ij x ys R s RA A u i v j +  +  , ( )( ) ( ),ij x ys R s Ru i v j   +  +  . 

The beat-frequency signal intensity distribution due to speckle interference is as follows[14]: 

1 1 1 1 1 1
2 2 2

0 0 0 0 0 0
 

( , , ) 2 cos( )( , , )
M N M N M N

ij ij ij kl ij kl ijkl ijkl

i j i j k l
i k or j l

I x y t A E A E E A A tx y t  
− − − − − −

= = = = = =
 

= = +  +    ,                          (6) 

where ijkl kl ij   = − , ijkl ij kl   = − . 

The time domain echo signal (6) contains the amplitude 0 ( , )A x y  and phase ( , )x y of the target. Because of the 

increase in the number of emitted lasers, the echo signal carries a great deal of phase difference information of the target, 

which is why the detector elements can be sparse to 
1

( 1)( 1)M N− −
 of the original. 

2.2 Two-dimensional spatial sparse reconstruction algorithm 

The echo signal (6) is sampling using a two-dimensional discrete detector array after it has been sparse. Assuming that 

the number of detector elements is xN N y , the two-dimensional spatial coordinates of the detector elements are as 

follows: 

( )( )

( ) ( )

xN / 2 1

N / 2 1

p x

q y y

x p M s

y q N s

= − −

= − −

，

，
                                                                        (7) 
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where ,p q  represents the serial number of the detector array, x y1, , N , 1, , Np q= = . The time domain echo signals 

of the detector array are: 
1 1 1 1 1 1

2 2

0 0 0 0 0 0
 

( , , ) 2 cos( )
M N M N M N

p q ij ij ij kl ij kl ijkl ijkl

i j i j k l
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I x y t E A E E A A t 
− − − − − −

= = = = = =
 

= +  +     ,                            (8) 

where ( ), ( )p qu x R v y R = = . 

Define ( ) ( )1 1, 1 1P p M Q q N= − + = − + . According to the above formula, the discrete Fourier transform is used 

to extract the phase difference 
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0,1, , 1, 0,1, , 1i M j N= − = −                             (9) 

and the amplitude product 
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0,1, , 1, 0,1, , 1i M j N= − = − ,                             (10) 

at the corresponding frequency[17]. 

The target amplitude spectrum 0A  is obtained by means of algebraic operation of amplitude product (10): 

( )
, , ,

0

,

/
( ) ( ) .,

x y xy

P i Q j P i Q j P i Q j

x y

i j

A is R js R
M M M

u v
E
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+ + + + + +

=+ +                                        (11) 

where ( ), ( )P Qu x R v y R = = . 

The target phase spectrum is derived in what follows. Redefining 

( )

( )

'

'

' / 2 ,    ' 1,2, ,

' / 2 ,    ' 1,2, ,

i x

j y

x i m S i m

y j n S j n

= − =

= − =
 

where ( )N 1xm M= − +1, ( )N 1yn N= − +1. 

According to equation (9), the phase difference of all the detector elements is matched and then the following phase 

difference matrix is derived: 

( ) ( )' ' ' ' ' 1, '( ), ,x

i j x i j i js RS u v u v    +− = −= + , ' 1, 2, , 1, ' 1, 2, ,i m j n= − =  

( ) ( )' ' ' ' ', ' 1( ), ,y

i j y i j i js RS u v u v     +− = −= + , ' 1, 2, , , ' 1, , 1i m j n= = − ,                           (12) 

where ' '( ), ( )i ju x R v y R = = . 

Using the least square method[18], a recursive solution formula for the absolute phase can be derived: 

( )' ' ' 1, ' ' 1, ' ', ' 1 ', ' 1 ' ' ' 1, ' ' ' ', ' 1

1
,  ', ' 2, , 1

4

x x y y

i j i j i j i j i j i j i j i j i jS S S S i j m    + − + − − −= + + + + − + − = − .                 (13) 

To eliminate phase unwrapping, replace equation (13) with equation (14) to get the target phase spectrum: 
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Using the amplitude and phase of the target, the target image can be reconstructed via inverse Fourier transform[19]. 

2.3 Constraint condition of the proposed imaging system 

According to the SBI principle, when the laser wavelength and imaging distance are constant, the imaging resolution is 

determined by the size of the detector array. Since the detector array size of the proposed imaging system is the same as 

that of the traditional three-beam imaging system, the imaging resolution of the both imaging system is the same. When 

the size of the detector array is x yD D , the transverse imaging resolution is 1.43 / xR D , and the longitudinal imaging 

resolution is 1.43 / yR D [15]. 

When the target size is x yT T , the laser detector spacing should satisfy the constraint condition 
2

/
3

x xs R T  and 

2
/

3
y ys R T . The number of lasers in emission array is M N , the detector spacings are ( )1x xd M s= −  and 

( )1y yd N s= − . The transverse dimension and the longitudinal dimension of the receiving array are 

( )( )/ 1x xm D M s = −   and ( )( )/ 1y yn D N s = −
 

, respectively. 

3. NUMERICAL SIMULATION 

The Strehl ratios (SR) is used to evaluate reconstructed image quality, which is defined as follows [19]: 
2

* *

( , ) ( , )

( , ) ( , ) ( , ) ( , )

a b

a a b b

O x y O x y dxdy
SR

O x y O x y dxdy O x y O x y dxdy
=



 
, 

where ( , )aO x y  is the intensity distribution of reconstruction image without errors and ( , )bO x y  is the intensity 

distribution of reconstruction image with errors. “*” represents conjugate. The closer the Strehl ratios is to 1, the better 

the imaging quality. 

The number of coherent laser beams is 9, the imaging distance is 1100km, the target size is 7.6×7.6m, the laser 

wavelength is 1064nm. The frequency of the 9 beams is 80MHz, 80MHz +10Hz, 80MHz+50Hz, 80MHz+120Hz, 

80MHz+250Hz, 80MHz+270Hz, 80MHz+350Hz, 80MHz+410Hz, 80MHz+440Hz, and its layout is shown in Figure 2. 

The frequency differences of the beams are 0Hz, 10Hz, 50Hz, 120Hz, 250Hz, 270Hz, 350Hz, 410Hz, and 440Hz, 

respectively. The emission shear length xs =0.1m, ys =0.1m, the detector spacing xd =0.2m, yd =0.2m, and the number 

of detector elements in the receiving array is 43×43. The sampling frequency is 4000Hz and the number of sampling 

points is 12000. 

0Hz 10Hz 50Hz

120Hz 250Hz 270Hz

350Hz 410Hz 440Hz

 
Figure 2. The frequency of laser beams (base frequency is 80MHz). 
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The parameters of the traditonal three-beam imaging system: the frequency of the three beams is 40MHz, 

80MHz+100Hz, 80MHz+150Hz, respectively. The emission shear length xs =0.1m, ys =0.1m, the detector spacing 

xd =0.1 m, yd =0.1m, and the number of detector elements in the receiving array is 86×86. The sampling frequency is 

4000Hz and the number of sampling points is 12000. 

Two grayscale images are selected as targets, as shown in Figures 3 (a) (d). The reconstruction image of the two-

dimensional spatial sparse reconstruction algorithm proposed in this paper is shown in Figures 3 (b) and 3(e), and the 

reconstruction image of the traditional three-beam reconstruction algorithm is shown in Figures 3 (c) and 3(f). All the 

reconstruction images are the result after an average of 40 times. According to the simulation results in Figure 3, after 

the number of detector elements is sparse by four times, the reconstructed image Strehl ratio of two-dimensional spatial 

sparse reconstructed algorithm is almost equal to that of traditional three-beam reconstructed algorithm. Thus, the two-

dimensional spatial sparse reconstruction algorithm is effective and feasible. 

 

         

                                                           (a)                                 (b)  SR=0.8469                      (c)  SR=0.8509 

         

(d)                                (e) SR=0.7996                         (f) SR=0.7916 

Figure 3. The reconstructed image and Strehl ratios: (a) (d) Origin target image; (b)(e) two-dimensional sparse reconstruction 

algorithm; (c)(f) traditional three-beam reconstruction algorithm. 

 

In the following, the number of detector elements is sparse by nine times. The layout of coherent laser array is 

shown in Figure 4. The emission shear length xs =0.1 m, ys =0.1 m, the detector spacing xd =0.3m, yd =0.3m, and the 

number of detector elements in the receiving array is 29×29. The reconstruction images of the two-dimensional spatial 

sparse reconstruction algorithm is shown in Figures 5(a) and 5(b). 
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Figure 4. The frequency of laser beams (base frequency is 80MHz). 

 

           
(a)  SR=0.8456                          (b)  SR=0.7951 

Figure 5. The reconstructed image and Strehl ratios of the two targets. 

 

From figures 3(c) and 5(a), figures 3(f) and 5(b), it can be seen that the reconstructed image Strehl ratio of two-

dimensional spatial sparse reconstruction algorithm is almost equal to that of traditional three-beam reconstruction 

algorithm when the number of detector elements is sparse by nine times. Therefore, the two-dimensional spatial sparse 

reconstruction algorithm is effective and feasible. 

4. CONCLUSION 

In order to overcome the problem that the number of detector elements in the SBI system is very large when imaing low-

orbit moving targets, a sparse sampling method in the two-dimensional spatial domain for SBI receiving system is 

proposed. We investages a two-dimensional sparse sampling reconstruction algorithm, and gives a wavefront recovery 

method to reconstruct the target image. Numerical simulation results demonstrate that when the number of coherent 

lasers is MN, the target image can be reconstructed when the number of detector elements of the two-dimensional 

sparse sampling imaging system is 1/(M-1)/(N-1) of the traditional three-beam imaging system, and the image quality of 

the both system is nearly the same. The proposed sparse sampling method in the two-dimensional spatial domain is 

effective and feasible. It reduces the difficulty and cost of detector array development and can promote the engineering 

application of this technology. 
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