Contents

DEEP LEARNING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12527 02</td>
<td>U-PEN++: redesigning U-PEN architecture with multi-head attention for retinal image segmentation (Invited Paper)</td>
<td>[12527-1]</td>
</tr>
<tr>
<td>12527 03</td>
<td>Development of GUI-based deep learning and image processing system for legume nodule segmentation and classification</td>
<td>[12527-2]</td>
</tr>
<tr>
<td>12527 04</td>
<td>Learning disentangled representation of video for pallet decomposition in industrial warehouses</td>
<td>[12527-3]</td>
</tr>
<tr>
<td>12527 05</td>
<td>Multi-class plant type detection in Great Lakes region using remotely operated vehicle and deep learning</td>
<td>[12527-4]</td>
</tr>
</tbody>
</table>

BIOMETRIC RECOGNITION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12527 06</td>
<td>Residues in succession recurrent U-Net for segmentation of retinal blood vessels</td>
<td>[12527-5]</td>
</tr>
<tr>
<td>12527 07</td>
<td>Blink detection for off-angle iris images using deep learning</td>
<td>[12527-6]</td>
</tr>
<tr>
<td>12527 08</td>
<td>Face recognition and access control applications of the generative classifier pix2pix</td>
<td>[12527-7]</td>
</tr>
</tbody>
</table>

DATA FUSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12527 09</td>
<td>A fusion Siamese-ResNet network applied for low shot object detection in warehouses</td>
<td>[12527-9]</td>
</tr>
<tr>
<td>12527 0A</td>
<td>The relationship between social media use and Covid vaccine hesitancy in African American communities in Mobile: pilot study</td>
<td>[12527-10]</td>
</tr>
<tr>
<td>12527 0B</td>
<td>Deep learning-based long-distance optical UAV detection: color versus grayscale</td>
<td>[12527-11]</td>
</tr>
<tr>
<td>12527 0C</td>
<td>Generative classifier pix2pix</td>
<td>[12527-12]</td>
</tr>
<tr>
<td>12527 0D</td>
<td>Classroom engagement evaluation using 360-degree view of the camera with deep learning techniques</td>
<td>[12527-13]</td>
</tr>
</tbody>
</table>
DETECTION AND TRACKING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12527 0E</td>
<td>Detecting heart diseases through machine learning</td>
</tr>
<tr>
<td>12527 0F</td>
<td>Shipboard tank corrosion segmentation via deep learning</td>
</tr>
</tbody>
</table>

DETECTION AND TRACKING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12527 0G</td>
<td>Detecting residuals at plastic samples to optimize laser cutting processes (Invited Paper)</td>
</tr>
<tr>
<td>12527 0H</td>
<td>Fine-grained classification of skin cancer types using deep neural networks on medical images</td>
</tr>
<tr>
<td>12527 0I</td>
<td>Multi-class semantic segmentation of wildfire fuel models in Sentinel-2 imagery using R2U-Net</td>
</tr>
<tr>
<td>12527 0J</td>
<td>Adaptive critic network for person tracking using 3D skeleton data</td>
</tr>
<tr>
<td>12527 0K</td>
<td>Expandable SPAD-based real-time gun muzzle flash localization system using FPGAs and deep learning</td>
</tr>
</tbody>
</table>

IMAGE QUALITY

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12527 0M</td>
<td>Image quality and object detection performance of convolutional neural networks</td>
</tr>
<tr>
<td>12527 0O</td>
<td>Automatic detection of a structural chromosomal abnormality: the del(5q) deletion</td>
</tr>
</tbody>
</table>

NEURAL NETWORK

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12527 0P</td>
<td>Deep neural networks for evaluation of specular microscopy images of the corneal endothelium with Fuchs' dystrophy</td>
</tr>
<tr>
<td>12527 0Q</td>
<td>Gtnet: guided transformer network for detecting human-object interactions</td>
</tr>
<tr>
<td>12527 0R</td>
<td>R2UNet for melt pond detection</td>
</tr>
</tbody>
</table>

POSTER SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12527 0S</td>
<td>MSAGNet: crowd counting network based on multi-scale attention grading</td>
</tr>
<tr>
<td>12527 0T</td>
<td>Makeup transfer based on Laplacian pyramid network</td>
</tr>
</tbody>
</table>
Real-time crowd counting via mobile-friendly Vision Transformer network [12527-28]

Leveraging motion saliency via frame differencing for enhanced object detection in videos [12527-35]
Conference Committee

Symposium Chairs

Tien Pham, The MITRE Corporation (United States)
Douglas R. Droege, L3Harris Technologies, Inc. (United States)

Symposium Co-chairs

Augustus W. Fountain III, University of South Carolina (United States)
Teresa L. Pace, L3Harris Technologies, Inc. (United States)

Program Track Chair

David W. Messinger, Rochester Institute of Technology (United States)

Conference Chairs

Mohammad S. Alam, Texas A&M University-Kingsville (United States)
Vijayan K. Asari, University of Dayton (United States)

Conference Program Committee

Ayman Alfalou, Institut Supérieur d'Electronique du Nord (France)
Khan M. Iftekharuddin, Old Dominion University (United States)
Mohammad Ataul Karim, University of Massachusetts Dartmouth (United States)
Jed Khoury, Lartec, Inc. (United States)
Thomas T. Lu, Jet Propulsion Laboratory (United States)
Asif Mehmood, Joint Artificial Intelligence Center (United States)
Sidike Paheding, Michigan Technological University (United States)
Rupert C. D. Young, University of Sussex (United Kingdom)