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ABSTRACT

LightPipes is a portable set of software tools, designed to model the propagation of coherent light in optical
systems using a numerical approximations of the scalar theory of diffraction. Models of interferometers,
laser resonators, waveguides, holographic setups and many more can be easily built using the components
of the package. The command-line shell-based version of the toolbox written originally in C works under
Unix, MSDOS and MAC OS. The toolbox also exists as a stand-alone program written in C++, which
can be compiled virtually under any existing operational system. A MathCad port of LightPipes provides
an extended user interface and full compatibility with the MathCad environment, the Java port allows for
running the package over the net using the Netscape web browser.

1. GENERAL CONCEPTS

The LightPipes toolbox is based on the concept of sharing a huge data structure, describing the distribution
of the scalar intensity and phase in the coherent light beam by a set of processing software tools. Each
tool has a standard interface to read and to write the structured data, tools can be connected in chains in
such a manner that each tool represents a certain step in the light propagation. This concept is easy to
realize using the possibility of piping the output of one process to the input of another. Such a possibility
exists under Unix, MSDOS and OS2. The approach also works under MacOS, provided that shells such as
MPW or ToolServer are present. As far as each software tool represents a single step in light propagation,
it is very easy to add special tools and to modify the existing set when a special problem arises. The
currently existing set of tools includes models of coherent propagation, phase and intensity screens, the
possibility of coherent mixing several light beams, input and output tools providing the possibility to import
experimentally measured intensity and phase distributions along with presentation quality graphics output
in many formats. A set of diagnostic tools provides information about the current parameters of the model.

Any Unix shell - see for example! or even script language such as Perl can be used to run LightPipes
programs. The syntax of the Unix version of the package is described in detail in.?

2. COHERENT PROPAGATION MODELS

Models of light diffraction form the basis of any free-space physical optics package. The descriptions of the
numerical approaches used in LightPipes follow.
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2.1. Spectral algorithm

Let us consider the wave function U in two planes: U(z,y,0) and U(z,y,2). Suppose then that U(z,y, 2)
is the result of propagation of U(z,y,0) to the distance z, with the Fourier transforms of these two
(initial and propagated ) wave functions given by A(c, 8,0) and A(a, B, z) correspondently. In the Fresnel
approximation, the Fourier transform of the diffracted wave function is related to the Fourier tra,nsform of
the initial function via the frequency transfer characteristic of the free space H(a, §, 2), given by34:

H= —-——jgz g g; = exp(—ikz(1 - o? — f%)1/?) (1)
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Expressions (1, 2, 3) provide a symmetrical relation between the initial and diffracted wave functions
in the Fresnel approximation. Applied in the order (2) = (1) = (3) they result in the diffracted wave
function, while being applied in the reversed order they allow for reconstruction of the initial wave function
from the result of diffraction. We shall denote the forward and the reversed propagation operations defined
by expressions (1, 2 and 3) with operators Lt and L~ respectively.

The described algorithm can be implemented numerically using the Fast Fourier Transform (FFT)*5 on
a finite rectangular grid with periodic boundary conditions. This results in a model of beam propagation
inside a rectangular waveguide with reflective walls. To approximate a free-space propagation, wide empty
guard bands have to be formed around the wave function defined on a grid. To eliminate the influence
of the finite rectangular data window, Gaussian amplitude windowing in the frequency domain should be
applied — see?? for extensive analysis of these computational aspects.

The simplest and fastest LightPipes command for propagation is forvard. It implements the spectral
method described by (1, 2, 3). The syntax is simple, for example if you want to filter a field through a
lcm circular aperture and then propagate the beam 1m forward, you type:

begin 0.02 1e-6 |circ_ap 0.005 |forvard 1 > foo
file_int in < foo |cros_out out |[file_ps out5.ps 128 >/dev/null
m foo

Figure 1. The result of the propagation: density, surface and cross section intensity plots

We see the diffraction effects, the intensity distribution is not uniform anymore.
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The algorithm is very fast in comparison with direct calculation of diffraction integrals. Features to be
taken into account:

o The algorithm realizes a model of light beam propagation inside a square waveguide with reflecting
walls positioned at the grid edges. To approximate a free space propagation, the intensity near the
walls must be negligible small. Thus the grid edges must be far enough from the propagating beam.
Neglecting these conditions will cause interference of the propagating beam with waves reflected from
the waveguide walls.

e As a consequence of the previous feature, we must be extremely careful when we propagate the plane
wave to a distance comparable with D?/), where D is the diameter (or a characteristic size) of the
beam, and X is the wavelength. To propagate the beam to the far field (or just far enough) we have
to choose the size of our grid much larger than the beam itself, in other words we define the field in
a grid filled mainly with zeros. The grid must be even larger when the beam is aberrated — divergent
beams reach the region border sooner .

Spectral FFT algorithm has its drawbacks. The positive message is that it is very fast, works pretty
well if properly used, is simple in implementation and does not require any allocation of extra memory.
A negative argument may be supplied to forvard. It means that the program will perform “propagation
back” or in other words it will reconstruct the initial field from the one diffracted.

2.2. Direct integration as a convolution: FFT approach

Another possibility of a fast computer implementation of the operator L™ is free from many of the draw-
backs of the described spectral algorithm. The operator L* may be numerically implemented with direct
summation of the Fresnel-Kirchoff diffraction integral:
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with functions U(z,y,0) and U(z,y, z) defined on rectangular grids. This integral may be converted into
a convolution form which can be efficiently computed using FFT®CHulman1.” This method is free from
many drawbacks of the spectral method given by the sequence (2) = (1) = (3), although it is still very
fast due to its use of FFT for computing of the integral sums.

We’ll explain this using a two-dimensional example, following,® p.100. Let the integral be defined in a
finite interval —L/2...L/2:
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Replacing functions U(zx) and U(z;) with step functions U; and Uy, defined in the sampling points of
the grid with j =0... N, and m = 0... N we convert the integral 5 to the form:
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Taking integrals in 5 we obtain:

N-1
Un= Z Uijj + UpKmo + UNKmnN (6)
=1

where: Ko, Kmj, Kmn are analytically expressed with the help of Fresnel integrals, depending only
on the difference of indices. The sums Z;V:"ll U;jKp; can easily be calculated for all indices m as one
convolution with the help of FFT.

The filter Fresnel, implements this algorithm for two-dimensional diffraction integrals. It is 2 to 5 times
slower than spectral algorithm, it uses 8 times more memory and it provides a “more honest” model of
Fresnel diffraction. As it does not require any protection bands at the region boundaries, the model may
be built in a smaller grid, therefore the resources consumed and time of execution are comparable or even
better than that of forvard. Fresnel does not accept a negative propagation distance.

Fresnel does not produce valid results if the distance of propagation is comparable with (or less than)
the characteristic size of the aperture, at which the field is diffracted. In this case forvard or steps should
be used. '

2.3. Finite difference method.

It can be shown that the propagation of the field U in a medium with complex refractive coefficient A, is
described by the differential equation:

U U . dU
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To solve this equation, we re-write it as a system of finite difference equations:
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Collecting terms we obtain the standard three-diagonal system of linear equations, the solution of it
describes the complex amplitude of the field in the layer Z + AZ as a function of the field defined in the
layer Z:

where (we put AX = AY = A)
1
“=b=-73 (10)
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The three-diagonal system of linear equations (9) is solved by the standard elimination (double sweep)
method, described for example in.? This scheme is absolutely stable (this variant is explicit with respect to
the index ¢ and implicit with respect to the index j). One step of propagation is divided into two sub-steps:
the first sub-step applies the described procedure to all the rows of the matrix, the second sub-step changes
the direction of elimination and the procedure is applied to all the columns of the matrix.
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The main advantage of this approach is the possibility to take into account uniformly diffraction,
absorption (amplification) and refraction. For example, the model of a waveguide with complex three-
dimensional distributions of the refraction index and absorption coefficient (both are defined as real and
imaginary components of the (three-dimensional in general) matrix Af’ ;) can be built easily.

It works also much faster than all the algorithms described previously on one step of propagation,
though to obtain a good result at a considerable distance, many steps should be done. As the scheme is
absolutely stable (at least for free-space propagation), there is no stability limitation on the step size in the
direction Z. Large steps cause high-frequency errors, therefore the number of steps should be determined
by trial (increase the number of steps in a probe model till the result stabilizes), especially for strong
variations of refraction and absorption inside the propagation path.

Zero amplitude boundary conditions are commonly used for the described system. This, again, creates
the problem of wave reflection at the grid boundary. The influence of these reflections can, in many
cases, be reduced by introducing an additional absorbing layer in the proximity of the boundary, with the
absorption increasing smoothly (to reduce the reflection at the absorption gradient) towards the boundary.

The finite difference algorithm is implemented in a filter steps. Steps accepts 6 arguments, first -
the step size, second- the number of steps, third and fourth - files containing absorption and refraction
coefficients to be imported and the last two arguments are the filename where field cross-sections are saved
after each N steps, where N is the last argument. All filenames are optional.

For example:

begin 0.004 0.63e-6 | circ_ap 0.0015 | lens 0.5 |\
steps 0.01 75 void void steps_out > /dev/null

produces the file steps_out which can be used to plot the radial intensity distribution in the propagating
beam.

‘steps_out’ ——

Iintensity

%001 5000 9005

%.0005
Radial coordinate of the ESam0.0015

Figure 2. Steps output for a simple lens.

Steps has a built-in absorption layer along the grid boundaries (to prevent reflections), occupying 10%
of grid from each side. Steps can import absorption/refraction coefficients defined in the format similar
to the one exported by file_int. Steps is the only filter in LightPipes which allows modeling of (three-
dimensional) waveguide devices. Like forvard, Steps can inversely propagate the field, for example the
sequence ...|steps 0.1 1 | steps -0.1 1 |... doesn’t change the field distribution.



3. EXAMPLE MODELS
3.1. Twyman-Green interferometer

Mirror 1
7 Z2
1 23
beamsplitter Mirror 2
Z4
Screen

Figure 3. Twyman-Green interferometer (left) and the output of the interferometer model

The scheme of the interferometer is shown in Fig. 3. In this example we put D = lcm, Z; = 0.5m,
Zy = 0.2m, Z3 = 0.4m, Z4 = 1m, A = 0.5um. The first mirror is plane and the second is aberrated (coma)
with aberration amplitude of 1um. The beam-splitter is ideal dividing the beam 3:7. We run the following
script:

#!/bin/csh -f

# propagation and splitting

begin 0.03 5e-7 | circ_ap 0.005 | forvard 0.5 | b_split foo 0.3 >fool

# Propagation to mirrorl, reflectionm,

# propagation back and beam-splitter again

forvard 1 <fooli_filter 0.7 >foo2

# Propagation to mirror2, reflectionm,

# propagation back and beam-splitter again

forvard 0.4 < fool | Zernike 3 1 0.005 25|forvard 0.4|i_filter 0.3 >foo3
# mixing the two beams and propagation to the screen

b_mix foo2 <foo3 |forvard 1| interpol 0.012 128 | file_ps tg.ps 128>/dev/null
# deleting the temp files

m foo fool foo2 foo3

3.2. Unstable laser resonator

This example of calculation of the output mode of an unstable resonator with square mirrors is taken
from.8 The scheme of the resonator is shown in Fig. 4 together with the equivalent lens waveguide scheme
used in the calculations. An infinite sequence of reflections from resonator mirrors is replaced here by finite
but long enough sequence of propagations through afocal magnifying lens system.

#!/bin/csh -f

# LightPipes script: a model of an unstable resonator
# with N=10, M=2,
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Confocal unstable resonator

The lens waveguide model

‘pha’ —
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Figure 5. Intensity and phase distributions at the output of the model of unstable resonator

# See D.B. Rench, Applied Optics 13, 2546...2561 (1974)
# All dimensions are taken from the table on p. 2552
# in this reference.
# Theoretically the initial field distribution may be random
# but we’ll use a good plane wave because it won’t
# converge fast with a random distribution
begin 20. 3e-4 512 >fieldl
# 20 field iteration inside the resonator
@ i=0
while( $i < 20)
# reflection from the convex mirror and propagation
rect_ap 5.48 < fieldl | lens -le4 |forvard 1e4 > field2
# reflection from the concave mirror and propagation
rect_ap 10.96 <field2 | lems 2e-4 | forvard 1e4 | normal y > fieldl
Strehl y < fieldl >/dev/null
ei+=1
end
# output of the resonator is screened by the output mirror:
# the output
rect_screen 5.48 <fieldl | file_int in |\
file_pha phalfile_ps res_out.ps |Strehl y>/dev/null



# removing the temp files
rm fieldl field2

When executed, the script prints values of the feedback coefficient and other information at each
iteration. From the output sequence we see that after 20 iterations the feedback coefficient stabilizes, so
the calculations can be terminated. If the files field1l and field2 are not deleted, we can continue the
calculations later. To do this, the operator begin should be commented, othervise the calculations will be
started from a plane wave.

In this example we calculated the mode profile of an ideal unstable resonator. A resonator with
aberrated and misaligned mirrors can be also easily modeled. One problem with the considered model is
the way, the mirror’s curvature is defined. Curved mirrors are modeled as phase masks lens and for high
curvatures the phase difference between the neighbour points of grid may be higer than 7 /4, especially in
the proximity of the mirror edges. If the phase difference is greater than x/4, the results are not valid, so
the nuber of points must be increased to fix the mentioned phase condition. It leads to enormous grids
(we used 512x512 ) for a simple problem. This can be solved by applying spherical coordinate system
to propagate spherical waves. In such a system the coordinate surfaces coincide approximately with the
propagating wavefront. The script for a laser with a confocal unstable resonator in spherical coordinates
follows (including laser medium):

#!/bin/csh -f

#all dimensions are in mm here

begin 7. 3e-4 100 >fieldl

# 40 iterations inside the resonator

Q@ i=0

while( $i < 20)

# reflection from the convex mirror and propagation

rect_ap 5.48 < fieldl|l_ amplif 1e-4 1e4 1 | lens_fresn -le4 1e4 > field2

# reflection from the concave mirror and propagation

rect_ap 10.96 <field2 |1_amplif le-4 1le4 1| lens_fresn 2e4 1e4d\
IStrehl y > fieldl

cp fieldi field_out

interpol 7. <fieldl > field2

mv field2 fieldi

Qi+=1

end

# output of the resonator is screened by the output mirror:

# the output

echo ’Output beam:’ :

cat field_out |convert y |rect_screen 5.48 | file_ps res_out.ps\
IStrehl y >/dev/null

# removing the temp files

rm fieldl field2

Here is the tail of the screen output:

Output beam:

Strehl: ratio= 8.209055e-01 energy= 2.917869e+02
Center_of_gravity: x= ~1.716706e-03 y= -1.600309e-03
Grid size: 1.400000e+01, Grid sampling: 100
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LT

Figure 6. The output (intensity and phase) of an unstable resonator, modeled in spherical coordinates

The last script is much faster and the field occupies a larger part of the grid. It produces almost the
same feedback coefficient, the Strehl number is also close to that obtained in the previous example, the
difference is due to the better computational approach used in the latter case.

4. LIGHTPIPES PORTS

4.1. LightPipes for Mathcad.

Mathcad from MathSoft Inc. is known to be one of the most user-friendly environments for handling
mathematics, text, graphics, animations and programs combined in one single document. Besides a large
number of functions internal to Mathcad, the professional versions of Mathcad offer the oppertunity to add
compiled libraries of user-written functions. The translation of the LightPipes tools into a Dynamic Linked
Library (DLL) for Mathcad resulted in an optical toolbox with high execution speed and a high level of
flexibility and ease of use for the user. Figure 7 shows a simple application of LightPipes for Mathcad.

The Lightpipes commands can be very well commented with text and figures, and the results are easily
presented using Mathcad’s graphical and animation features. Furthermore the document can easily be
modified and executed within the program without involving text editors or compilers. The program feature
of Mathcad makes it possible to perform iterations which can be used to demonstrate laser resonators or
phase retrieval. These and several other examples, including an on-line manual of LightPipes for Mathcad
can be found in reference .10

4.2. LightPipes on the Internet.

The internet has great potential for computer assisted education and several attempts have been made
to build courses which can be done by the student on her of his personal computer. Using the platform
independent programming language 'Java’ so-called ’applets’ can be written which can be embedded in
HTML-pages to be displayed with a web-browser like Internet Explorer and Netscape. As the Java compiler
does not generate processor code but an intermediate 'byte-code’ for a virtual machine a second stage is
necessary to run the program on the user’s computer. Because of this the execution of Java-applets is slow
(5-10x slower) compared to compiled C-programs. All though modern browsers have a so-called just-in-time
compiler to increase speed, high performance applications having extensive codes will enhance the time for
loading the applet requiring relative high-speed internet connections. Fortunately, Netscape introduced
the possibility to produce plug-ins which are pre-compiled (C-) routines which must be down-loaded by the
user once, extending the capabilities of the browser.!! Plugins can be made for all important platforms.
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| sizesSmm N=150 A=550-nm plane wave diffracted wave rorn
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Addition of the two fields:  F := LPBeamMix(F 1,F )

| Propagation to the screen over a distance z:= 50-cm and  F := LPFremel(i,F) I := LPIntensity(2,F)
{ calculating the intensity: m

Plotting the interference pattem on the screen:

Figure 7. A two-holes interferometer modeled in LightPipes for Mathcad.

Because LightPipes demands as much as computer power as possible we made a Netscape-Plugin which
contains a selection of the LightPipes routines. After placing the DLL in the Netscape Plugin directory
the user can load HTML pages containing small Java applets which call the LightPipes routines from the
plug-in DLL. Loading the applet can be done in short time because besides the LightPipes routines-calls,
the applet only contains the commands for communication with the user and for presenting the (graphic al)
results in the applet-window. In this way, inter-active optical simulations can be executed within reasonable
time exploring the maximum available computer power. Figure 8 shows an example of the simulation of a
laser with a stable resonator including saturable gain.

The user can alter parameters like mirror curvature, aperture diameter, etc. during the execution and
observe the effect on the transversal mode structure and the output intensity of the laser. More examples
of simulations with LightPipes on the internet can be found on our web-site.!°

4.3. PipesSA a portable C+4+ version of LightPipes

The Ct* port of the LightPipes package, PipesSA, was constructed because the pipe based version worked
very slowly on a Macintosh. This is caused by the relatively slow disk input/output, at least on the machine
of one of the authors.
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Model description

The simulation uses the Lightpipes optical toolbox plug-in to simulate propagation, and the ission through optical components. Study The source for details.
Concentrate on the 'runTheMode!’ method. The other methods are used for the graphics etc.

'nupropauionto\ﬁemd@npeiﬂhl’mmnda herical dinate system to calculate the Huygens integral for free propagation. Routines .

o SRR R

Figure 8. Simulation of a stable laser resonator with LightPipes using a Plug-in within a HTML page.
After 75 round trips the user decreased the out coupler reflectivity from 99% to 30% to study ’Q-switching’
of the laser.

The idea was to create a stand alone version of the tools, that otherwise only work within the MPW
shell (a Macintosh developers environment), with a datastructure in it that holds the intermediate light
beams. This means that the piping mechanism is no longer possible but as a compromise a command
parser was included in the program. Each filter operates on this data structure and no input/output is
required. Each command line should only contain a single filtering command.

The lightpipes program should be inserted in an ascii file that can be loaded into PipesSA or entered
at the ’Pipes>’ promt directly.

The ascii file should read:

begin 0.1 1e-6 256
circ_ap 0.025
file_ps psO
fresnel 100
file_ps psi

quit

As stated, these commands can be entered directly, or the file can be loaded using the ’load filename’

command. If the file with ’filename’ exists, the file is read and the commands are executed sequentialy.

Other commands that are now included in PipesSA are obtained by starting up the program and
entering the ’help’ command. The result is given in the following output of PipesSA.



Pipes> help
The implemented commands so far are:

begin circ_ap rect_ap circ_sc rect_sc
gauss gauss_sc  zernike lens tilt
file_ps file_pgm file_int file_pha cros_out
b_split b_mix read write load
forvard fresnel steps forward pip_fft
unwrap interpol interpl strehl random
gamma normal absorber amplifier

! lother commands are soon to follow!!

Pipes> quit

To get information on these commands the command ’help command_name’ can be used, but not all

commands have been given this option yet. For a full discription on all commands the Unix manual can
be used.

This command driven program has been written in standard C** to enable the porting to other

operating systems. It was found that this standalone version performs faster than the pipe based version
on both HP and MSDOS machines.
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