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Abstract

Recently, Candès and Donoho (1999) introduced the curvelet transform, a new
multiscale representation suited for objects which are smooth away from disconti-
nuities across curves. Their proposal was intended for functions f defined on the
continuum plane R2.

In this paper, we consider the problem of realizing this transform for digita' data.
We describe a strategy for computing a digital curvelet transform, we describe a
software environment, Curvelet256, implementing this strategy in the case of 256 x
256 images, and we describe some experiments we have conducted using it. Examples
are available for viewing by web browser.
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1 Introduction
1.1 The Importance of being Digital
About fifteen years ago, mathematicians and physicists in France were working intensely
on what they called the wavelet transform, a representation of functions defined on the real
line f(t), t E R. Arising from questions in geophysics and mathematical physics, the new
transform was conceptually intriguing —offering the possibility of decomposing phenomena
naturally into components at multiple scales, with all the interesting possibilities that would
entail. Much of the early work was of a theoretical or natural philosophy bent, and one of
the fascinating achievements was the exposure of parallels and contrasts with intellectual
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developments in a wide range of fields in science and technology, from computer-aided
design to group representation theory [16].

Today, rather than a topic for intellectual stimulation and development, the wavelet
transform is a very practical everyday tool, applied routinely by thousands of researchers
in all branches of science and engineering. It could be considered a 'household word' in the
halls of scientific and engineering institutions.

One of the key steps in this rather dramatic morphing from concept to practice was the
realization that, although the transform was originally considered in a rarified atmosphere
— a representation for continuous functions on the continuum line — it had a natural trans-
lation into the world of digital signals. This opened the way for a transformation of the
topic from elitist to populist.

The story is well-known; see for example Meyer's book [15]. Mallat and Meyer (1986)
introduced the concept of multiresolution analysis which showed that a certain wavelet
transform could be organized as a ladder of component stages, each one involving simply
applying some digital filters to certain discrete-time 'signals'. Daubechies (1987) showed
that there was a family of short, finite length filters obeying all the constraints imposed
by the multiresolution analysis, leading immediately to a fast orthogonal transform of
finite-length sequences. Once this discrete wavelet transform was available, scientists and
engineers in many fields had a fast and flexible tool for exploring the multiscale structure
of their digital data.

1.2 Curvelet Transform
Recently, Candès and Donoho [7] developed a new multiscale transform which they called
the curvelet transform. Motivated by the needs of image analysis, it was nevertheless first
proposed in the context of objects f(xi , x2) defined on the continuum plane (x1 ,x2) R2.
The transform was designed to represent edges and other singularities along curves much
more efficiently than traditional transforms, i.e. using many fewer coefficients for a given
accuracy of reconstruction. Roughly speaking, to represent an edge to squared error 1/N
requires 1/N wavelets and only about 1/v curvelets.

The curvelet transform, like the wavelet transform, is a multiscale transform, with
frame elements indexed by scale and location parameters. Unlike the wavelet transform, it
has directional parameters, and the curvelet pyramid contains elements with a very high
degree of directional specificity. In addition, the curvelet transform is based on a certain
anisotropic scaling principle which is quite different from the isotropic scaling of wavelets.
The elements obey a special scaling law, where the length of the support of a frame elements
and the width of the support are linked by the relation width length2.

All of these properties are very stimulating and have already lead to a range of inter-
esting idealized applications — for example in tomography and in scientific computation
[9, 10]. In effect, an understanding of the curvelet transform concept opens one's eyes to
the fact that in two and higher dimensions, new multiscale representations are possible,
having properties unavailable by wavelets and having stimulating structural features.

While it is possible that this new idea will be quickly forgotten with the passage of
time, we feel that the very novel features of the transform - anisotropy, anisotropy scaling
- compel further investigation for the moment.
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1.3 Digital Curvelet Transform?
In modern life, utilitarianism is king. Long before all the intellectual exploration of curvelets
has run its course, the need to explore practical applications will intrude, leading directly
to the question how can we take a curvelet transform on digital data? For example, one
could imagine, based on the idealized applications already reported, that such a digital
transform could be valuable in a variety of areas where edges arise in 2-d data — such as
image processing, medical imaging, and remote sensing.

Speaking soberly, the curvelet transform definition (at least at the moment) is much
more involved than the wavelet transform, and it seems highly unlikely that such a spe-
cialized transform could ever enjoy the same kind of widespread audience as the wavelet
transform. However, it also seems that the transform is intrinsically interesting because
of its structural differences from other existing transforms. The popularity of the wavelet
transform ensures there will be substantial, if not overwhelming, interest for any new trans-
form with both substantial similarities and contrasts to wavelets.

In this article, we report a strategy for developing a digital curvelet transform (DCvT),
an implementation for 256 by 256 images, and we point the reader to results of first exper-
iments on image data. Our experiments show clearly that with very few digital curvelet
terms, one obtains a reconstruction which is surprsingly faithful to the geometry of the
edges of the image.

In our view, the specific tools we develop are not conclusive; an authoritative realization
of the DCvT remains to be developed. It may be worth keeping in mind that, after the
continuous wavelet transform was first defined, it took years of very hard effort by very
clever and zealous researchers for the digital wavelet transform to emerge as a coherent,
definite tool available for widespread application. In that context, we claim merely that
the present effort may inspire further work and may form a useful base for future research.

1.4 Contents
The contents of the article are as follows. In Section 2, we review the curvelet transform for
continuous objects defined in R2. In Section 3, we describe our implementation strategy,
which mimics the continuum viewpoint faithfully, and we describe the required components
of our transform, such as the digital ridgelet transform. In Section 4, we describe the
software library we have created, and some of the tasks it is able to perform. In Section
5, we give an inventory of some of the experiments we have performed. Section 6 discusses
some directions for further work.

2 Curvelet Transform
The curvelet tight frame for L2(R2) is a collection of analyzing elements 'y,2 = 'y(x1, x2)
indexed by tuples ,a e M' to be described below. It has been defined in [8, 7] and has the
following key properties:

• Transform Definition:
E M'.



. Parseval Relation:
IIfM = i: 2

. L2 Reconstruction Formula:
1= i: (f,'YL)YL.

ILE M'

These formal properties are very similar to those one expects from an orthonormal basis,
and reflect an underlying stability of representation.

2.1 Analysis
There is a procedural definition of the transform.

. Subband Decomposition. We define a bank of subband filters Po, (, s � 0). The
object f is filtered into subbands:

f*(P0f,1f,2f,...).
The different subbands Lf contain details about 2_2 wide.

. Smooth Partitioning. We define a collection of smooth windows 'WQ (x1 , x2) localized
around dyadic squares

Q = [ki/2s, (k1 + 1)/2S) x [k2/2s, (k2 + 1)/2S)

Multiplying a function by the corresponding window function 'WQ produces a result
localized near Q. Doing this for all Q at a certain scale, i.e. for all Q = Q(s, k1 , k2)
with k1 and k2 varying but s fixed, produces a smooth dissection of the function into
'squares'. In this stage of the procedure, we apply this windowing dissection to each
of the subbands isolated in the previous stage of the algorithm.

A3f F-* (wQtSf)QEQ8.

. Renorrnalization. For a dyadic square Q, let

(TQI)(xl,x2) = 2sf(2sx1 _ ki,2sx2 k2)

denote the operator which transports and renormalizes f so that the part of the input
supported near Q becomes the part of the output supported near [0, 1]2.
In this stage of the procedure, each 'square' resulting in the previous stage is renor-
malized to unit scale

gQ = (TQ)1(wQ13f), Q e Q3.

• Ridgelet Analysis. Each 'square' is analyzed in the orthonormal ridgelet system. This
is a system of basis elements p making an orthobasis for L2(R2):

a,2 =
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The flow of this procedure is illustrated in Figure 1.
For an understanding of why the procedure might be organized as it is, consider Figure

2.
Suppose that we have an object f which exhibits an edge. Upon subband filtering, each

resulting fine-scale subband output zf will contain a map of the edge in f, thickened
out to a width 2_2s according to the scale of the subband filter operator. This gives the
subband the appearance of a collection of smooth ridges. When we smoothly partition each
subband into 'squares', we see either an 'empty square' —if the square does not intersect the
edge — or a ridge fragment. Moreover, the ridge fragments are nearly straight at fine scales,
because the edge is nearly straight at fine scales. Such nearly straight ridge fragments are
precisely the desired input for the ridgelet transform.

2.2 Synthesis
There is also procedural definition of the reconstruction algorithm.

. Ridgelet Synthesis. Each 'square' is reconstructed from the orthonormal ridgelet
system.

gQ =
A

. Renorrnalization. Each 'square' resulting in the previous stage is renormalized to its
own proper square

hQ (TQ)gQ, Q E Q3.

. Smooth Integration. We reverse the windowing dissection to each of the windows
reconstructed in the previous stage of the algorithm.

zf= : WQ.hQ.
QeQ3

• Subband Recomposition. We undo the bank of subband filters, using the reproducing
formula:

f = P0(P0f) +
s>O

2.3 Crucial Subtleties
2.3.1 Exact Reconstruction and Tight Frames

In the above procedures, the windowing WQ and the filtering A underlying this procedure
were specially constructed to insure that all these steps result in perfect reconstruction,
and, in addition, a Parseval relation. Hence the window function is a nonnegative smooth
function w, providing a partition of energy:

— k1, x2 — k2) 1, V(xi, x2).
k1,k2
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Thus, if we form hQ = WQ • h for all Q Q, then we have the exact reconstruction property

>i: WQ.hQ i: wh=h,
QEQ3 QEQ8

while at the same time we have the energy-conservation property

IhQI fwh2 f wh2 = fh2 HhH.QQ QEQ QEQ

The subband filtering is based on the same idea, only in the frequency domain. We build
a sequence of filters o and W25 24sw(228.), S 0, 1, 2, . . . with the following properties:
Io is a lowpass filter concentrated near frequencies 1; 12s S bandpass, concentrated
near E [22s 223+2]; and we have the partition of energy property

o(e)2 + I(22se)2 = 1, ye.
s>O

Then P0f = ?o * f and zf = W2s * f.

2.3.2 The Scaling Law

The precise definition of the bandpass filtering was given immediately above, and it contains
one very noteworthy feature. The s-th subband is based on keeping frequencies in the
corona E {22s, 222]. The 2s in the exponent is different than what one might expect
based on the s subscript

The point of this distinction is that subband s contains ridges of width 22s but is
being sectioned into squares of side 2S Therefore the resulting 'squares' which interact
with edges will be ridge fragments of width 2_2s and length 2_s; i.e. the aspect ratio
obeys width length2.

This highly anisotropic shape of the support is absolutely crucial to the performance of
the transform; in particular the traditional isotropic scaling relation length width would
take away all benefit of the subsequent step.

2.3.3 The Ridgelet Transform

Figure 3 helps illustrate a key point about the quantitative performance of the procedure.
When one isolates a ridge fragment from subband s with aspect ratio 2 by 2_23, and
renormalizes, one obtains an object which, in the frequency domain, has support localized
to the frequency band ICI 2S , and lives in a region of width 1.

The final stage of the analysis procedure uses orthonormal ridgelets [1 1] to analyze such
a fragment. These have an expression in the frequency domain as follows:

= C(,k(lCDw(8) + ,k(-lCDw,(8 + ))/2.

Here the 'Ij,k are Meyer wavelets for R, w are periodic wavelets for [—7r, 7r), and indices
run as follows: j, k E Z, £ = 0,.. . , 2 1 — 1; i � 1, and, if e = 0, i = max(1, j), while if

= 1, i max(1, j). We let A = (j, k, i, £, e) and let A be the set of such A. Figuratively
speaking, the ridgelet with A = (j, k, j, £, 0) has support in and with a width
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Figure 3: Illustration of Ridgelet Analysis of a Ridge Fragment.

of about 2-' , localized near 2r/2 . Hence, when taking ridgelet coeffficients, we are
essentially overlaying on the image of the Fourier transform of f a sampling grid that is
based on a collection of rectangular cells defined in polar coordinates.

Effectively, the idea behind the ridgelet transform is that when one encounters an object
with a Fourier transform looking like such a ridge fragment, a very few ridgelet coefficients
will be needed to represent it.

We note that it would not be very helpful to use classical transforms for such ridge
fragments. The Fourier transform uses sinusoids, which correspond to points in the fre-
quency domain. A ridge fragment's Fourier transform is again a ridge of dimensions 2
by 1 . Hence order 2 coefficients are needed to represent a single ridge fragment using
sinusoids. The Wavelet transform has elements which correspond to annular rings in the
frequency domain, multiplied by sinusoids; their angular support is very large, effectively
constant, indpendent of scale. The ridge fragment is supported in a band of angular reso-
lution Q(2). Hence it also takes order 2 coefficients to represent a single ridge fragment.
Only the ridgelet basis has the required angular localization to mimic the ridge fragment
signatures. For rigorous analysis, see the references, for example, [5].

3 Implementation Strategy
We now describe a strategy for realizing a digital implementation of the curvelet transform.
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3.1 Specific Assumptions
Our strategy is based on a series of assumptions.

. Image Size 56 256. We have preferred to deal with images of size n by n, where
n = 28 44 The choice of n a power of 4 is very important to our viewpoint. The
strategy we are following would adapt most easily to the construction of transforms
for n = 1024 and n = 4096. Accomodation to other sizes is possible.

. Subband Definitions. We have partitioned the frequency domain into only 3 subbands,
indexed by s = 1, 2, 3. It is helpful to keep in mind that on a 256 * 256 image, the
usual discrete wavelet transform would offer 8 subbands, at levels j = 0, . . . , 7. The
Curvelet Subband s = 1 corresponds to wavelet subbands j = 0, 1, 2, 3 in a way we
will describe later. Curvelet Subband s = 2 corresponds to wavelet subbands j = 4, 5,
and Subband s = 3 corresponds to wavelet subbands j = 6, 7.

The general rule of succession we are trying to implement in this way is

Curvelet subband s —÷ Wavelet Subbands j E {2s, 2s + 1}.

Hence, in an implementation with n = 4096, we would have 5 subbands, with s = 4

corresponding to j = 8, 9 and s = 5 corresponding to j = 10, 11.

These choices are responsible for implementing the anisotropic scaling principle un-
derlying the curvelet transform, which is in some sense only an asymptotic principle.
Thus, we have no objection in practice to adjustments to this set of subband defini-
tions.

. Subband Filtering. To actually implement our decomposition into subbands, we
use the wavelet transform. We first decompose the object into its 8 wavelet sub-
bands, then to form Curvelet Subband s, we perform partial reconstruction from
those wavelets at levels j {2s, 2s + 1}. Call the resulting 256*256 array D3.

It may turn out to be important that this is not actually an implementation of true
subband filtering, but only an approximation; see remarks in Section 6.1.

. Spatial Windowing. To subband array D, we apply a localization into squares ac-
cording to windows WQ which are of width about twice the width of the associated
dyadic square.
To give precise details, it is convenient to keep in mind two scaling conventions. In
the continuum convention we are dealing with Q = Q(s, k1 , k2) defined as earlier, and
spatial positions refer to points (x1, x2) in the square [0, 1J2. In the pixel convention we
have an array extending from 1 through 256 in each coordinate. The link is of course
that spatial position (x1, x2) corresponds to pixel position (i1, i2) via x = (ii— 1)/256.
For example, the continuum dyadic square Q(4, 5, 7) = [5/2, 6/2) x {7/2, 8/2]
corresponds most naturally to the pixel dyadic square Q(4, 5, 7, 256) = [5. 2 + 1, 6
2] x [7. 2 + 1, 8 2]. The general formula puts 's,k = k . n/2s and

(s, k1, k2, n) = ['ski + 1, Is,ki+1] X [Is,k2 + 1, Isk2+1].



The window WQ is supported at samples (i1 i2) in the discrete square

['s,k1 n/2s+l, 's,ki+l + n/25+h] x [Is,k2 _ n/2s+l, 's,k2+1 + n/2s+lJ

which is the "doubling" of the corresponding Q about its center. The windows are
designed to partition energy:

i: WQ(il,i2) = 1 V 1 ii,i2 :$ 256.
ki,k2

In our implementation, we partitioned subbands into squares in the expected way,
with a twist. For s = 2, 3, we partition the subband D5_1 by dyadic squares in Q5:

gQ(ii — 's,k1,2 Is,k2) WQ(ii,i2)
. (D_i)(ii,i2);

each such pixel array will be supported in pixels [n/21, 3n/2s]2 (i.e. the support
extends to negative indices in our convention).

Thus, in the pixel convention, the role of 'renormalization to the unit square' is
replaced by clipping' to a square of side 2s*1 by 2' pixels, and in the implementation
we have tried, the linkage between Lf and Q is substituted for a linkage between
D1 and Q.
We emphasize this last detail. In the case where n = 256 which principally occupies
us, this means that subband s = 2 is subdivided into an eight-by-eight array of
squares, each supported in an array of 64 x 64, while subband s = 3 is subdivided
into a sixteen-by-sixteen array of squares, each supported in an array of 32 x 32.

The seemingly more straightforward correspondence, between subband D and Q.
(note the agreement of subscripts) , which mimics notationally the definition in the
continuum case, would result in a factor of two coarser subdivision of the image
than the one we have adopted. In that correspondence subband s = 2 would be
divided into a four-by-four array of squares. However, it seemed to us that for the
experiments we hadin mind, this degree of spatial partitioning was too coarse; the
choice we adopted, D_1 and Q, uses squares twice as fine.

It is in the choice of this correspondence that we impose the width length2 scaling.
Since it is only an asymptotic notion, the factor of two does not make any substantial
difference to the degree of faithfulness of the principle, while making better practical
sense to us.

We suspect that in a larger image, we would use a continuation of this s — 1 —* s
calibration, so that subband s = 4 would involve a 32 by 32 array of 'squares' and
S = 5 would involve a 64 by 64 array of 'squares'.

. Digital Ridgelet Transform. The innermost step of our algorithm is to apply the
digital ridgelet transform to each "square" . We use the DRT described in [12]; see
also [1]. That transform has the following characteristics. Given an array of size n x n,
where n is dyadic, it returns an array of size n x 2n containing ridgelet coefficients.
The transform is modeled on the orthonormal ridgelet transform described above,
but the digital realization is not sufficiently faithful to be orthonormal. Instead,
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Figure 4: BigMac Image, and stages of Curvelet Analysis.

it provides a linear transform from [2(n2) into e2(2n2) which nearly preserves the
norm of the transform. In fact, the ratio between the extreme singular values of the
transform is about 2. so that it obeys a Parseval relation to within about a factor of
two.

3.2 Example
\Ve now give an example with the image BigMac, stolen by Donoho from a wire services
web site in August 1999.

Figure 4 displays the stages of DCvT. the input data are at the extreme left, and
processing moves us from left to right. The format is loosely patterned like Figure 1, so
that the different subimages are located in positions corresponding to their appearance in
the flow diagram Figure 1.

At the extreme left of this Figure is the BigMac image. The next column displays
the three bandpass-filtered subbands. The next column displays the result of smoothly
partitioning into 'squares'. The final column displays the ridgelet coefficients of each such
square.

Figure 5 displays the stages of inverse DCvT, the input curvelet coefficients are at the
extreme left, and processing moves us from left to right.

At the extreme left of this Figure are 1% of the curvelet coefficients of the BigI\Iac
image. All other coefficients have been set to zero. The next column displays the recon-
struction of individual squares' from these local expansions. The next column displays the
superposition of squares to yield a partial reconstruction of the corresponding subband.
The final column displays the superposition of subband reconstructions into an overall
reconstruction.

BgMac

Bandpass BigMac, s=1Ii
Bandpass s=2

—

•

Bardpass, s=3

'

RdgeIet Coefl, s=2Partitoned s=2

j

Partitioned, s=3 Ridgeet Coeff, s=2



Bandpass, s=1

Squares s2 Recon s=2

11tEi .

Overall Recon

Figure 5: Curvelet Coefficients, and stages of Curvelet Synthesis.

3.3 Data Structures
We now summarize the data structures created by the above processing chain.

The transform of a 256-by-256 image has three arrays, containing the data associated
with subbands s = 1, 2, and 3 respectively.

The output for Curvelet Subband s = 1 consists of Wavelet Subbands j 0. 1. 2, 3:
hence there are (24)2 or 256 coefficients stored for this subband.

The output for Subband s = 2 is an array of extent 512 x 512 x 2. Viewing each 512
by 512 slice as an image, one has embedded in this image an 8*8 array of 64*64 "squares".

The final output, for Subband s 3 is an array of extent 512 x 512 x 2. Viewing
each 512 by 512 slice as an image, one has embedded in this image an 8*8 array of 64*64
"squares".

3.4 Expansiveness
The transform we have just described is highly expansive. A 256 by 256 image consisting
of 64K pixels generates about 1M coefficients. This gives an expansion by a factor of about
16.

This can easily be understood by reviewing the chain ofprocessing stages that go into
the curvelet transform. We are concatenating several processing stages, and some of these
are expansive by factors of 2 or even four, so the result is a total data volume sixteen times
larger than the original.

The key expansive steps are:

Smooth wzridowzng. When performed on Subband 3, this takes an array of size
256*256 and breaks it into a 16* 16 array of overlapping squares of size 32*32. The
data in each resulting 32*32 square is associated to' a corresponding 16*16 'input

23
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square'. In other words, each 'output square' has four times as many numbers as the
corresponding 'input square'. So this step is expansive by a factor 4.

. Ridgelet Transform. The digital ridgelet transform we are using takes an n by n array
and returns an ri by 2n array. So this stage is expansive by a factor 2.

There appears to be substantial opportunities for additional decimation. The bandpass
filtering stage removes frequencies outside a certain band, but we do not exploit this fact
when we later take the ridgelet transform. In particular, the ridgelet transform ought to
be essentially vanishing at ridge scales j far from s. By a careful matching of the bandpass
operator and the ridgelet transform, we ought to be able to arrange that all coefficients
outside a certain scale (or interval of scales) be omitted both from calculation and from
storage.

It appears that this lost opportunity is reponsible for an additional factor 2 expansion-
ism.

4 Curvelet256 Toolbox
We have built a Toolkit of Matlab routines that carries out the above strategy, and allows
us to conduct experiments. The idea of this toolkit was to enable us to try out a set of
standard curvelet transform domain manipulates on a suite of image data.

The toolkit is designed so that one can assimilate a 256*256 image into the given
framework, run some standard scripts, and generate some .mat files containing curvelet
transform coefficients along with others containing various partial reconstructions. Among
the processing tasks one can try are 'movie making', in which a sequence of frames illustrates
the progressive reconstruction of an image by using successively more curvelet terms.

An online version of this article is available at

http: I/www-st at . stanford. edu/donoho/Reports/2OOO/curvsoft .pdf

in Acrobat format (.ps and .ps.Z files are also available). In that version of the article several
pages describe in detail the steps required to download, install, and use the software.



5 Image Processing Experiments
We have now applied the above tools, in a variety of settings, to the following datasets:

Barbara Classic for less Sexist Image Processors
BigMac Mark McGwire Hits One Out
Brain MRI of someone's Brain
fprint Fingerprint
InTheCar Roy Lichtenstein Cartoon (1960's)
Lenna Classic for Sexist Image Processors
Picasso 'Three Women' Engraving (1922-23)
Siesta Millet Painting (1850's)
Tube A Sinusoid
Yukon Satellite Imagery of Mountains

Some of our results can be found on the web, at URL

http : //www-stat . stanford . edu/donoho/curve1et . site

This web site makes available several MPEG movies that can be viewed with any
standard web browser. Some of these movies illustrate that curvelet reconstructions, based
on a very few coefficients, can provide a very good idea of the geometry of the underlying
object. Particularly good movies to view include

. The movie of the fingerprint image fprint shows that reconstruction from just a few
hundred coefficients give a very clear idea of the fingerprint geometry. The movie is
located at URL

http : Ilwww-stat . stanford . edu/donoho/curve1et . site/fprint .mov

. The movie of the cartoon image InTheCar shows again that a sense of the edge
features can be obtained very rapidly, with just a few coefficients. The movie is
located at URL

http : I/www-stat . stanford . edu/donoho/curve1et . site/BigMac .mov

As an example, we include here a set of four frames from the fingerprint movie. The
first frame gives the s = 1 approximation using 64 (father) wavelets at the coarsest level;
one has no inkling that the underlying image is a fingerprint . The second frame shows
that adding just 256 curvelets immediately recaptures the geometry of the fingerprint. The
third frame shows more geometric information being blended in, and the final frame shows
that most of the work at later stages is filling in texture on the ridges in the image.

We next display an engraving by Picasso,'Three Women', 1922-23. This engraving,
from the permanent collection of the Metropolitan Museum of Art, was made during a
period in which Picasso was experimenting with the idea of 'Drawings in one continuous
line', an idea that gained currency through the work of André Breton and other postwar
revolutionaries. The image is nearly a simple curvilinear sketch, almost executed in a
single continuous line, although the background color is not uniformly flat. We display the
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Figure 6: Four frames from the Fingerprint Movie. Panel (a) Approximation by 64 Wavelet
coefficients: (h) Adding in 256 Curvelet Coefficients; (c) Adding another 768 Curvelet
Coefficients: (d) Adding another 3072 Curvelet Coefficients

-

/

Figure 7: Picasso, 'Three Women'. Panel (a) Scanned Original, converted to square format:
(b) Approximation by 256 Curvelet Coefficients.



Figure 8: Lichtenstein, 'In The Car'. Panel (a) Scanned Original, converted to square
format; (b) Approximation by 64 wavelets and 256 Curvelet Coefficients.

results of approximation from 256 curvelets at s = 2, 3. The durvelets begin to capture the
geometry rather quickly.

Finally, we display a painting by Roy Lichtenstein, 'In The Car', from his series of
'Cartoon' paintings of the 1960's, key paintings from the Pop Art movement. We also
display an approximation by 256 curvelets with s = 2, 3, and 64 wavelets at s 1.

6 Directions for Future Work
We see several avenues for further exploration.

6.1 Directions for Improved Implementation
We are hardly satisfied with the performance of our existing DCvT scheme. On the one
hand. working with the raw transform is clumsy because of the factor 16 expansivity. In
fact, each subband has more coefficients than the original image has samples. On the
other hand, while the transform makes rapid progress towards reconstructing the object
as the first few coefficients paint in' the geometric structure like so many well-chosen
brushstrokes, after a few thousand coefficients have been added, the progress towards the
ultimate reconstruction slows down substantially.

It seems to us that the "expansivity problem" needs to be addressed by extensive
practical and theoretical work. On the other hand, the issue of "slowing progress" seems
addressible by smallish modifications of the basic software. We discuss two such modifica-
tions.

6.1.1 Better Ridgelets

The ridgelet transform we have used suffers from a positional aliasing problem. If the
desired shape of a 'logical ridgelet' is of an elongated sausage or needle, then a display of
the frame elements of our underlying digital ridgelet transform has the appearance of pairs
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of antipodal 'logical ridgelets'. This 'twinning' effect is undesirable, and suggests that in
any expansion where, logically, one ridgelet would do the trick, at least two will have to be
used, in order to cancel one of the two partners in a pair. If this effect could be repaired,
the achievable compression ratio might double.

The explanation of this effect seems subtle, we believe it has to do with the reliance of
the DRT algorithm on fast fourier transforms and on the underlying toroidal periodicity of
the FFT.

In our opinion, this effect may be remedied by modifying the transform slightly, so that
instead of providing an n by 2n transform, it provides a 2n by 2n transform. However, this
step would increase in expansivity by a factor of 2, and so doing this in a naive way would
increase the expansivity of the overall DCvT from a factor 16 to a factor of 32, which is
clearly in the wrong direction.

6.1.2 Better Bandpass Filters
The bandpass filtering we have used is in actuality not traditional bandpass filtering at all,
but instead what we call 'wavelet bandpass filtering'. In order to get an image localized
to frequencies near the band [22s, 22s+2) we literally expand the object in nearly-symmetric
Daubechies wavelets and discard terms except at j = 2s or j = 2s + 1.

This approach is convenient from a software development standpoint, since the required
wavelet tools are available in Wavelab. However, this pseudo-bandpass filtering injects
directional artifacts into the output. If there is an edge at 8 radians, one often sees in
the pseudo-bandpass output a ghost edge at 9 + ir/2 radians. This 'twinning' is again
undesirable since it again suggests that in an expansion where, logically, one ridgelet would
do the trick, at least two will have to be used, in order to cancel one of the two partners in
a pair.

In our opinion, a stricter adherence to the spirit of the continuous transform would help
here. By performing a true frequency-domain bandpass filtering, the directional aliasing
can be avoided.

6.1.3 Better Decimation
The output of subband filtering is in principle bandlimited. It would seem that a rep-
resentation of the coefficients with substantially smaller expansivity might be developed
based on this. In effect, rather than applying the full ridgelet transform to each square,
one would extract only coefficients at subbands where nonzero results are logically possi-
ble. This might substantially reduce storage requirements for all subbands except the very
finest scales.

6.2 Directions for Fundamental Research
6.2.1 A Search for New Refinement Schemes

A novel and interesting aspect of the curvelet scheme is the fact that each generation of
refinement leads to a doubling of the spatial resolution as well as a doubling of the angular
resolution. This aspect — where the number of resolvable feature directions increases with
scale — is very different from wavelet and associated approaches.



In the algorithm presented here, we have explored a frequency-side approach to defining
curvelets. An interesting open question: is there a spatial-domain approach, starting from
the above structural feature? That is, is there a spatial domain scheme for refinement
which, at each generation doubles the spatial resolution as well as the angular resolution?

6.2.2 Understanding Sampling
A fundamental problem facing the project is the fact that pixel sampling is very problematic
for phenomena where angular sensitivity is important. If we may be permitted poetic
language, it seems to us that 'most' of the 'effort' in reconstructing an object during
progressive curvelet reconstruction is 'caused' by the necessity to make the reconstruction
and image match at a pixel level along edges. Because of pixelization, the underlying
property of real imagery — that while images are abruptly discontinuous across edges, but
smooth along edges — is completely disrupted by pixelization: digital images are oscillatory
along the edge even when the true underlying image is smooth along the edge. This
phenomenon restricts the effectiveness of curvelet representation of digital data; using
once again poetic language, the digital curvelets are 'trying to represent' the underlying
continuum image rather than the pixelized one.

Clearly this issue calls for much deeper understanding.

References
[1] Averbuch, A. , Coifman, R.R. , Donoho, D.L. , Israeli, M. , and Walden, J. (1999) Rec-

toPolar FFT and its Applications. Manuscript.

[2] Candès, E. (1999) Harmonic Analysis of Neural Networks, Appl. Comput. Harmon.
Anal. 6 (1999), 197—218.

[3J Candès, E. (1998) Ridgelets: Theory and Applications. Ph.D. Thesis, Department of
Statistics, Stanford University.

[4] Candès, E. (1999) Monoscale ridgelets for the representation of images with edges,
Technical Report, Statistics, Stanford.

[5] Candès, E. (1999) On the Representation of Mutilated Sobolev Functions. Technical
Report, Statistics, Stanford.

[6] Candès, E. and Donoho, D. (1999) Ridgelets: The key to High-Dimensional Intermit-
tency?. Phil. Trans. R. Soc. Lond. A. 357 (1999), 2495-2509

[7] Candès, E. and Donoho, D. (1999) Curvelets. Manuscript.

[8] Candès, E. and Donoho, D. (1999) Curvelets: a surprisingly effective nonadaptive
representation for objects with edges. in Curves and Surfaces IV ed. P.-J. Laurent.

[9] Candès, E. and Donoho, D. (1999) Curvelets and Linear Inverse Problems.
Manuscript.

29



Candès, E. and Donoho, D. (1999) Curvelets and Curvilinear Integrals. Manuscript.

Donoho, D. (1998) Orthonormal Ridgelets and Linear Singularities. To appear, SIAM
J. Math. Anal.

Donoho, D. (1998) Digital Ridgelet Transform via Digital Polar Coordinate Trans-
form. Manuscript.

M. Frazier, B. Jawerth, and G. Weiss (1991) Littlewood-Paley Theory and the study of
function spaces. NSF-CBMS Regional Conf. Ser in Mathematics, 79. American Math.
Soc.: Providence, RI.

PG. Lemarié and Y. Meyer. (1986) Ondelettes et bases hilbertiennes. Rev. Mat. Ibero-
americana 2, 1-18.

Meyer, Y. (1993) Wavelets: Algorithms and Applications. Philadelphia: SIAM.

Meyer, Y. (1993) Review of An Introduction to Wavelets by Charles Chui. Bull. Amer.
Math. Soc. (N.S.) 28 350-360.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

30


