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INTRODUCTION

Before commencing with an outline of
the presentation an explanation of the
the definitions used throughout is given

ér;titzoglug;;temsﬁti on Glasgow, Scotland, United Kingdom - 2nd September 2008 3
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DEFINITIONS

©® Technology development is the progression over
time of manufactured optical components:
- Materials = optical substrates
- Coatings = multi-layer thin films
- Surfaces = optical surface profiles

Optical design software is a tool to apply technology

®

Optical designer ‘creates’ the optics portion of the
of the optical system design utilizing optical design
software to apply technology

® FOV is Field of View & NA is Numerical Aperture

SPIE Europe B= i i =
Optical Systems Design Glasgow, Scotland, United Kingdom — 2nd September 2008 4
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DEFINITIONS (Cont’d)

©® Objectis to the left and Image is to  wavelength % (nm)

the right unless otherwise shown axo "
; 60004-" "
® Three wavebands discussed: g e
- Infrared = 0.7-1.5, 3-5 & 8-13uym o ol
{(700-1500, 3000-5000 & 8000-13000nm) . g22{™
- Visible = 0.435-0.656ym vebe | e Region
(435-656nm) Spectrum 2923 O
- Ultraviolet = 0.434~0.013pum - 455>
(434.4-13.4nm) s~
oo~
2004="
10.21““’ w

ér;ﬁ%;”g;;mgesign Glasgow, Scotland, United Kingdom — 2nd September 2008 5
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® By way of mainly the US Patent database, examples
are given to illustrate the reliance of optical system
design on key technology

® The examples are categorized by waveband of
operation and partly chronologically

® Performance characteristics are not discussed but
all examples may be considered high performance
for their intended applications

SPIE Europe ;

Optical Systems Design Glasgow, Scotland, United Kingdom — 2nd September 2008 6
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WAVEBAND 1
INFRARED

SPIE Europe ; . ; .
Optical Systerns Design Glasgow, Scotland, United Kingdom - 2nd September 2008 7
"Optical system design reliance on technology development" SCOtOpth

EXAMPLE 1.1
PETZVAL OBJECTIVE — SECURITY

Passively Athermalized System
EFL=51mm F/1.5 FOV@=5° Waveband=8-13um

ey ! KEY
B 16 = : TECHNOLOGY
I
A /\(’////‘//// VORISR TIETENS Al v | MATERIAL
A . R — 4. ‘—l I
- R ' COATING
OBJECT e //lc
SPACE : 10 imace SURFACE
AL : SPACE 12 BENEFITS
\—— ==l 50LID STATE
L] =0 I
0 % lo] ROBUST
‘\ 5 1 ISSUES
AsySe;q B S5¢ 7 TOXIC
0 —_— STARING WMATERIAL
ARRAY
MATERIAL
@ DETECTOR i
US Pat. No. 4505535 A1 |.A.Neil Mar. 19,1985
SPIE Europe ; . ; "
Optical Systems Design Glasgow, Scotland, United Kingdom — 2nd September 2008 8
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EXAMPLE 1.2a
ZOOM TELESCOPE ~ SECURITY

fo4 | Fop, 530
'F|°DC.3',“

%13.25
IMAGE
H EGCBQNC 25
rd ’

ér;‘;:ogl”g;;tems-_‘c on Glasgow, Scotland, United Kingdom - 2nd September 2008 9
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EXAMPLE 1.2b
ZOOM TELESCOPE — SECURITY

Compact Mechanically Compensated Zoom System
Zoom Ratio=5x Exit Pupil @=10mm & FOV@=72° Waveband=8-13im

| KEY
H G TECHNOLOGY
J\ £ IMAGE
2 g D CB SpACE 25 MATERIAL
OBJECT A 26 v | coatmne
SPACE 24 ’
N = SCANNING SURFACE
SYSTEM
DETECTOR BERREITS

26 22 EFL 23[ (}5 COMPACT
ISSUES
s\ f

NONE
High Efficiency Anti-Reflection
Coatings Throughout

US Pat. No. US4,669,171 A1 L.ANeil Apr.21,1987

SPIE Europe

= ited Kingdom -
Optical Systems on Glasgow, Scotland, United Kingdom - 2nd September 2008 10
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EXAMPLE 1.3a

1 i
[ \
i 2
ISIi“IJia Il TI—-EF L—-| 3

17

X B8.99

= ‘ IMAGE
sPace ff  HEP — SPACE 23
o

21

it
25 26 27

SPIE Europe B= i i =
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EXAMPLE 1.3b
ZOOM TELESCOPE — SECURITY

Compact Optically Compensated Zoom System

ScotOptix

11

ScotOptix

Zoom Ratio=8x Exit Pupil @=14.4mm & FOV@=60° Waveband=8-13um

-P KEY
OBJECT IMAGE
SPACE SPACE 23 TECHMNOLOGY
22 (' SCANNING MATERIAL
o SYSTEM
% Y oetector | | v | coatns
21 N s v | SURFACE
21
|——EFL- BENEFITS
fv et COMPACT
25 26 27  Aspherical SIMPLE
Surface MECHANICS
High Efficiency Anti-Reflection ISSUES
Coatings Throughout FOCUS DRIFT
THROUGH ZOOM
US Pat. No. 4,632,498 A1 I.A.Neil Dec. 30, 1936 ASPHERE COST

SPIE Europe B= i i =
Optical Systems Design Glasgow, Scotland, United Kingdom — 2nd September 2008
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EXAMPLE 1.4
OBJECTIVE - SECURITY

Passively Athermalized & Color Comected Air Spaced Doublet
with Diffractive Surface
Waveband=_8-13um (possibly 3-5um depending on materials)

KEY
ZnS GaAs T — TECHNOLOGY
| MATERIAL
COATING
5 v | SURFACE
e BENEFITS
SOLID STATE
1 ROBUST
SCANNING ISSUES
SYSTEM SECONDARY
Diffractive DETECTOR COLOR
Surface LONG LENGTH
US Pat. No. 5,504,628 A1 J.F.Borchard Apr. 2, 1996
SPIE Europe gy . ; ~
Optical Systems Design Glasgow, Scotland, United Kingdom — 2nd September 2008 13
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EXAMPLE 1.5a
FOCUS LENS
GROLP 88
'l 668MM F12.00 64.5 DEG. FFOV puce
VERTEX LENGTH = %02 28MM
SPIE Europe gy Glasgow, Scotland, United Kingdom - 2nd September 2008 14
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EXAMPLE 1.5b
ZOOM OBJECTIVE — SECURITY

Compound Zoom System

Zoom Ratio=180x EFL=6.7-1201mm F/2-5.84 FOV@=64.5-0.4° KEY
Wavebands=3-5um or 8-13jm TECHNOLOGY
MATERIAL
FOCUS LENS
GROURS Multiple Aspheres Throughout ¥ | BRATING
v | SURFACE
BENEFITS
HIGH ZOOM
RATIO
ISSUES
STARING
ARRAY COMPLEX
04 . MECHANICS
Zoom Groups on Each Side of an DETECTOR ACEENG
Intermediate Image VARIES
ASPHERE COST
US Pat. No. 7,224,535 B2 |.A Neil May 29, 2007
SPIE Europe gy Glasgow, Scotland, United Kingdom - 2nd September 2008 15

Optical Systems Design

ScotOptix

"Optical system design reliance on technology development"

WAVEBAND 2
VISIBLE

SPIE Europe gy Glasgow, Scotland, United Kingdom - 2nd September 2008 16
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EXAMPLE 2.1

COMPACT CAMERA ZOOM OBJECTIVE
— PHOTOGRAPHIC CONSUMER

Zoom Objective System with 2x Zoom Ratio
EFL=35.7-68.5mm F/3.5-6.8 Image@=43.2mm Waveband=Visible

KEY
Zoom Group 2 TECHNOLOGY
ariator,
Zoom Group 1 e ) Aspheres MATERIAL
(Compensator) s.l <5 COATING
A /FP FILM OR v SURFACE
2 - <= ELECTRONIC BENEFITS
) BETECIOR SIMFLE
Focusing
either One or CRAMESET
Both Elements LCWY COST
' ISSUES
Lens Parked in
Camera Body MOLDED
ASPHERES
—
561 562
US Pat. No. 4,936,661 A1 E.l.Betensky, M.H.Kreitzer & J.Moskovich Jun. 26, 1980
SPIE Europe ; - ; _
Optical Systems Design Glasgow, Scotland, United Kingdom — 2nd September 2008 17
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EXAMPLE 2.2a
TELEPHOTO OBJECTIVE — PHOTOGRAPHIC CINE

Passively Athermalized & Color Corrected System with Liquid Elements
EFL=693mm F/2.75 Imaged=28.9mm Waveband=435-656nm

q

@

KEY
' 9 TECHNOLOGY
A i < | MATERIAL
51 52 53 b
s o P v | COATING
5 34 5;9 0131445 55
2 bWy PH g e SURFACE
¢ )\ Bas 2oy
[fiz- a 17 % 7 573 4 FILMOR BENEFITS
| i__ : ELECTRONIC TG
A THIVIE: LIy DETECTOR GLASSES
EANEY M
. - 2 L \ COMPACT
ISSUES
% — s Al
o o K LiQuiD
| Liquid 1 Liquid 27, 2 Focus Groups Provide DISCOLORATION
Quintuplet Close Focus Objectiimage LOW
Height Ratio <3:1 TEMPERATURE
US Pat. No. 5,638,215 A1 LA Neil Jun. 10, 1997
SPIE Europe ;
Optical Systems Design

Glasgow, Scotland, United Kingdom — 2nd September 2008
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EXAMPLE 2.2b
TELEPHOTO OBJECTIVE — PHOTOGRAPHIC CINE

Quintuplet

Abnormal Dispersion
Crown Glass with
Thermal Coefficient of
Refractive Index in
Opposite Direction from
Standard Glass

Liquid 2

Liquid 1
’
A
ér;‘ﬁ%;”g;;tmgeggn Glasgow, Scotland, United Kingdom — 2nd September 2008 19
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EXAMPLE 2.3a

MACRO FOCUS ZOOM OBJECTIVE
— PHOTOGRAPHIC CINE

THROUGH ZOOM
(INFINITY FOCUS)

SHORT
FOCAL
LENGTH

LONG
FOCAL
LENGTH

SPIE Europe gy

Optical Systems Design Glasgow, Scotland, United Kingdom — 2nd September 2008 20
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EXAMPLE 2.3b

MACRO FOCUS ZOOM OBJECTIVE
— PHOTOGRAPHIC CINE

THROUGH FOCUS
(SHORT FOCAL LENGTH)

INFINITY
FOCUs

CLOSE
FOCUsS

Close Focus Object/image Height Ratio = 2.5:1 (At Long Focal Length)

SPIE Europe gy Glasgow, Scotland, United Kingdom - 2nd September 2008 21
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EXAMPLE 2.3c
ZOOM OBJECTIVE — PHOTOGRAPHIC CINE

Macro Focus Zoom System with 3.5x Zoom Ratio
EFL=14.5-50mm F/2.2 Image@=28.9mm \Waveband=455-644nm

5 54 KEY
" NEGHTVE FOVER 3 e TECHNOLOGY
52 53 55 56 57
NEEATYE Lo z—d*-—wnggmg e MATERIAL
i e " rome FONER v | coaTnG
R Al v | SURFACE
Jgtis| 70020 . pus BENEFITS
1wy
i VERSATILE
e = = < < L FIXED FOCAL
=20 |11 | N DETECTOR
= ST LENGTH OFTION
547
812 814 sti?’ ’\ 0 5 siz| $44 mﬁ ISSUES
dig sts  SeLl | so | | |53 . S
S350 sa1 518 COMPLEX
ms/stop MECHANICS
g Aspheres ASPHERE
A cosT

US Pat. No. 6,122,111 A1 LA.Neil & E.l.Betensky Sep. 19, 2000
SPIE Europe gy Glasgow, Scotland, United Kingdom - 2nd September 2008 22
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EXAMPLE 2.4a

ScotOptix

ZOOM OBJECTIVE — PHOTOGRAPHIC CINE

THROUGH 2Z00M
(INFINITY FOCUS)

VI
LONG ‘@ = 0
FOCAL = | 7 e —
LENGTH Sh = |
Y
l .% { 35%
[
SHORT | | VT : 7
FOCAL b E;----w-— =ik St
\ Al
LENGTH : | ;;ﬁ :

SPIE Europe oy

Optical Systemns Design Glasgow, Scotland, United Kingdom — 2nd September 2008
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EXAMPLE 2.4b

23

ScotOptix

ZOOM OBJECTIVE — PHOTOGRAPHIC CINE

Compact Zoom Objective System with 4.7x Zoom Ratio
EFL=19-90mm F/2.7 Image@=27.8mm Waveband=455-644nm

51 34
A

A
£ POSITIVE POWER N 7 10 Abnormal
5% 2 Partial Dispersion
/—‘R"TWL\ /‘% /—H 5 i welmm
FOVER J POVINE  NEGATIVE POSITIVE ~ powER® Glasses
POWER  POWER
2 . \D
2 T » i
E7™ g 10 4 (16'? 19 IMAGE
ME!:'E ] [ W iy (as| sl 20 e
— 1
SRR 1 . B R SOR ERE IR r__r 51 ;ﬁﬁ_ __________
7 1 F”L ) I
{ sl 53 / Z;;‘_SZ] .J
¥ OBJE
OBIECT = 3 TP\ q;« 4 so | FILMOR
s | si4 s;{:” 55 33 ELECTRONIC
5 59 su\ 4 522 SH ?s 532 S;ﬁ NS:&E DETECTOR
85\ sip  Si2 S 5”
S6 830 535
-~
Aspheres

US Pat. No. 7,123,421 B1 J.Moskovich, l.A.Neil & T.Yamanashi Oct. 17, 2006

SPIE Europe oy

Optical Systemns Design Glasgow, Scotland, United Kingdom — 2nd September 2008

KEY
TECHNOLOGY

v | MATERIAL

v | COATING

v | SURFACE

BENEFITS

COMPACT

VERSATILE

FIXED FOCAL
LENGTH OFTION

ISSUES

COMPLEX
MECHANICS

ASPHERE
COST

24
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EXAMPLE 2.5
OBJECTIVE - PHOTOGRAPHIC PROSUMER

Telephoto System with Diffractive Surface
EFL=780mm F/5.8 Image@=43.2mm Waveband=435-656nm

KEY
TECHNOLOGY
— y v | MATERIAL
S ¢ & @ COATING
/ l v | SURFACE
VA1 A5 BENEFITS
N | —— (=== i B — e
il | COMPACT
FILM OR COLOR
ELECTRONIC CORRECTED
DETECTOR
5 REDUCED MO, OF
2 Laminated 1 Vo T EXOTIC GLASSES
- & ¥ |d1
Diffractive =4 ISSUES
US Pat. Pub. No. 2008/0088950 A1 H.Endo Apr. 17, 2008
SPIE Europe ; . ; .
Optical Systerns Design Glasgow, Scotland, United Kingdom - 2nd September 2008 25
L]
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EXAMPLE 2.6a
ZOOM OBJECTIVE - PHOTOGRAPHIC HDTV

THROUGH 2Z00M
(INFINITY FOCUS)

SHORT FOCAL

LENGTH
mm

LONG FOCAL .

LENGTH = fsa&&é&ﬁ

2100mm 2 S ntarmediate

Image
- 20x T
Zoom Ratio Zoom Ratio

SPIE Europe ; i : "
Optical Systems Design Glasgow, Scotland, United Kingdom — 2nd September 2008 26
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EXAMPLE 2.6b
ZOOM OBJECTIVE — PHOTOGRAPHIC HDTV

THROUGH FOCUS
(SHORT TO LONG FOCAL LENGTH)

SHORT FOCAL
LENGTH
CLOSE FOCUS

LONG FOCAL
LENGTH
INFINITY FOCUS

Close Focus Object/Image Height Ratio = 1.33:1 (At Long Focal Length)

ér;‘n%gl"g;setms Desian Glasgow, Scotland, United Kingdom — 2nd September 2008 27
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EXAMPLE 2.6¢
ZOOM OBJECTIVE - PHOTOGRAPHIC HDTV

Compound Zoom System with 300x Zoom Ratio
EFL=7-2100mm F/2-13 Image@=11mm VWaveband=Visible

— EEE— -~ 18 Abnormal KEY
o 276 Partial Dispersion TECHNOLOGY
' Glasses
- o P o | MATERIAL
R RGL v | COATING
Hr
B s 3%
12l 15, 2 i = %40 v | SURFACE
[\u }U I [z %ﬂifﬁ CJ]E}“' 5739 41
Neo [ S ) BENEFITS
RS 1 ] I S, ' [
LV "”L'; f“' "gE LARGE ZOOM
[ | stor \'u \ : §79~ RATIC
} sTO \ s¢ W ELECTRONIC
| DETECTORS el
INTERMEDIATE IMAGE' FINAL IMAGE PLANE ISSUES
; COMPLEX
sgreapan | s
Aspheres ASPHERE COST

US Pat. No. 6,691,188 B2 E.|.Betensky, J.B.Caldwell, |.A.Neil & T.Yamanashi Nov. 1,2005

SPIE Europe gy

Optical Systems Design Glasgow, Scotland, United Kingdom — 2nd September 2008 28
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WAVEBAND 3
ULTRAVIOLET

ér;‘ﬁ%g]”g;;msﬁc an Glasgow, Scotland, United Kingdom — 2nd September 2008 29
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EXAMPLE 3.1
PROJECTION RELAY LENS — MICROLITHOGRAPHIC

All Refractive Projection System
RELAY=5:1 NA=0.57 Image@=31.2mm Wavelengths=193, 248 & 365nm

e L Lep F:FIRST GB;'ECT SIDE TECHPLEJLOGY
FOCAL POINT
Lia L1g Lus Lug L3 ,_32" La‘éi Lig Las lst| Lsa Lss Le7
W Lig\ lar\bwe| Lan Lag\ Laa) Lag| | (Lsa/lss | Leg L METERIAL
‘ l Le2 v | COATING
| | | W - E
s | \ {}f{ | v | SURFACE
w ‘ h‘ fCoLLIMATED
‘ i BENEFITS
AS/ —-;!-isiLIGHT BEAM
e g | RESCLUTION
~ 30 Lens Elements r-*-: ISSUES
B 62 8 o R ?,g‘l INHOMOGENEITY &
4G i BIREFRINGENCE
Iy i SURFACE QUALITY
ALIGNMENT
US Reissued Pat. No. RE 37,846E H.Matsuzawa, M.Kobayashi, K.Endo & Y.Suenaga Sep. 17, 2002
SPIE Europe gy Glasgow, Scotland, United Kingdom - 2nd September 2008 30
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EXAMPLE 3.2
PROJECTION RELAY LENS — MICROLITHOGRAPHIC

Refractive/Reflective Projection System
RELAY=4:1 NA=0.45 Image@=30mm Wavelengths=240-256nm

VERSION 1
KEY
Cube TECHNOLOGY
Beamsplitter
v | MATERIAL
| COATING
SURFACE
BENEFITS
o All Spherical Surfaces RESCOLUTION
i (Larger NA possible ISSUES
Plate_ with Aspheres) RN
Beamsplitter
US Pat. No. 4,953,960 A1 D.MWilliamson Sep. 4,1990
SPIE Europe ; . ; .
Optical Systerns Design Glasgow, Scotland, United Kingdom - 2nd September 2008 3
L ]
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EXAMPLE 3.3
PROJECTION RELAY OPTICS — MICROLITHOGRAPHIC

All Reflective Projection System
RELAY=4:1 NA=0.20 Image@=31mm Wavelengths=13.4nm & <200nm

KEY
TECHNOLOGY

MATERIAL

RETICLE

v | COATING

A e SURFACE
s s R 2 2 V BENEFITS

HIGH
RESOLUTION

ISSUES

@134nm =10%
TRANSMISSION
WITH COATINGS

ASPHERE COST
ALIGMNMENT

o

6 Mirrors with 6 Aspheres

US Pat. No. 5,815,310 A1 D.M.Williamson Sep. 29, 1998

SPIE Europe ;
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WAVEBAND 4
MULTIPLE

33
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EXAMPLE 4.1
OBJECTIVE - SECURITY

Dual Waveband System
F/4 5(elev), FA .5(azim) & F/2 3(average) FOV@=40°(elev.) & 53°(azim.)

Wavebands=Visible & 8-13um
KEY
\\ SIDE VIEW
. ‘-.,\ | = TOP VIEW TECHNOLOGY
- \ MATERIAL
v | COATING
v | SURFACE
Aspheres BENEFITS
COMPACT
SOLID STATE
ROBUST
DETECTOR  ARRAY
DETECTOR M 25 mm | CcOST
US Pat. No.5.847,879 A1 L.G.Cook Dec.8, 1998
34
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EXAMPLE 4.2a

OBJECTIVE — SURVEILLANCE

Compact Multi-waveband Wide Angle Objective
FOV 15°- 80° x 360°

—\fici y ¥ KEY
SINGLE SYSTEM Wayebands Visible, 0.7-1.5um & 3-5um = —
\ W v | MATERIAL

Aspheres v | COATING

ZnS Elements
———" | v | SURFACE

BENEFITS
COMPACT
T = X ==y - SOLID STATE
X : 2 ; == ROBUST
MULTI- PURPOSE
ISSUES
ASPHERE COST

i Detector
FOV 15°- 80° x 360° _ 4 s
Beamsplitter 4 ‘__VISIDIE & 0.7-1.5um
PATENT PENDING PSSt
15
ér;‘ﬁ%gj"gg;tmrc an Glasgow, Scotland, United Kingdom — 2nd September 2008 35
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EXAMPLE 4.2b
OBJECTIVE — SURVEILLANCE

| 38

Blind
Region |

Blind Region

“1gloo’ FOV
20°- 90° x 360°

g r— . i -
10 mm Blind Regions =

PATENT PENDING
72 74

SPIE Europe gy Glasgow, Scotland, United Kingdom - 2nd September 2008 36
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EXAMPLE 4.2c
OBJECTIVE — SURVEILLANCE

\.

E
A

%, [ Extended . =
_\ Aperture W 2 Detector Modules /i
_ 2 .

4 FIG.10 e

Unobscured
Hemispherical FOV
180° x 360°
PATENT PENDING
égé;"g;;mﬁc an Glasgow, Scotland, United Kingdom — 2nd September 2008 37
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OBJECTIVE — SURVEILLANCE
QUAD SYSTEM
Unobscured
Global FOV @ M 1omm !
360° x 360°
PATENT PENDING
ér;:t%ogj"g;;mﬁc on Glasgow, Scotland, United Kingdom - 2nd September 2008 38

XXiX



XXX

"Optical system design reliance on technology development" SCOtOpth

KEY TECHNOLOGY
SUMMARY

WAVEBAND
INFRARED VISIELE ULTRAVIOLET MULTI

EXAMPLE 11 12 13 14 15 21 22 23 24 25 26 31 32 33 41 42

CIRCA 80’s 80's 80’'s 90’s 00’s 90’s 90’'s O0's O00's 00’'s OO’'s 90’s 90’s 90's 9O0's OO's
MATERIAL v v v v v v
COATING v v v v v v v v v v v ¥
SURFACE v v v ¥ v v v v ¥ v v Y
ég&;”g;;tmgesign Glasgow, Scotland, United Kingdom — 2nd September 2008 39
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CONCLUSION

® Usually technology provides ‘improvements’
but occasionally it is ‘disruptive’ in that it
dramatically changes the optical system design
such as enabling a new form of design

® In the specific case of disruptive technology
this usually appears to happen separately in
either materials, coatings or surfaces

® No apparent trend in technology development
except:

“Necessity is the mother of invention”
Plato ¢. 400 BC

SPIE Europe B= i i =
Optical Systems Design Glasgow, Scotland, United Kingdom — 2nd September 2008 40
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EyeGlass "~
Display GENII

K

IJALuh
A Perspective on the
Design of Head-Worn Displays

Jannick Rolland with

Ozan Cakmakci, Florian Fournier, and Sophie Vo

CREOL, The College of Optics and Photonics
the University of Central Florida

http://odalab.ucf.edu
jannick@odalab.ucf.edu = lJCF

Highlights

Introduction
Applications
Prior Work

Early work at ODALab
Current Technologies under Development

Head-mounted Projection Displays (HMPD)
Eyeglass Head-Worn Displays (HWD)
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Why Head-Worn Displays?

Assuming HWDs can be designed aesthetically (which is
not a given) to meet with social acceptance:

- Mobility \

* Privacy

y Constancy: Provides the basis for novel user interfaces that
are available constantly (on a demand basis) to the user

Science Fiction Sets Expectations of
Where we Aim to Be Going!

* Goldsman, A. (1998). Lost in Space. New Line Cinema

XXXiV



Medical Rooms of the Future

Telemedicine: Face to Face Teleportal

- Fig 2. Vision of mobile “Face-to-
“'_'g, B Face” interaction (1) remote team
p W merber wearing 3D face recording
systera talk in to (2) teara leader in

control center.

Fig 1. Vision of “see-thru-my-eyes”
capability. (1) Doctor in local control room
guides (2) remote treatment via stereoscopic
see-thru headset wom by exerzency

technician.

Courtesy of Frank Biocca, MSU
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Wearable Displays:
A Range of Possibilities

Their future lies in large part in their “seamless”
integration with tangible interfaces around us

Augmented Reality
| Mixed Reality
Vs. Virtual Reality (full immersion




Augmented/Mixed Reality

Optical See-through
Manitor H A I

Rendered image

o

Real image

Qverlaid
image

Optical
Combiner

-/
Camera ‘ i(

Captured image Real image

Video See-through

v

Image
Composition

Rendered image

Overlaid
image

Historical Notes

First graphics-driven HWD was developed by Ivan Sutherland in the 1960s.

A
Augmented Reality Displays

XXXVii



+ HMD-mounted stereo cameras with custom-designed lenses compensate
for display distortion (Biocca & Rolland, Presence 1998)

Some applications call for
optical see-though
capability

XXXViii



Highlights from Past Development

« U.S. Army first to fly a helmet-mounted sighting
system on the Cobra helicopter.

« IHADSS (Integrated Helmet and Display Sighting
System) was then deployed by the U.S. Army for
the AH-64 Apache Helicopter.

IHADSS, while monocular, greatly contributed to the
proliferation of all types of HMDs.

The success of HWD design is most likely to occur
when developed

* In the context of the users and
« Targeted at specific applications

A Main Design Trade-off

FOV vs. Resolution - Currently limited by microdisplays

o Human eye 1arcmin
# of pixels __Background

Angle subtended by a pixel =

Approaches:
1) High-resolution area of interest or inset

2) Partial binocular overlap (“Luning”)

3) Optical tiling (Kaiser, Sensics)

Eye-center Point

baveled sidds

Recent developments by Sensics.

XXXiX



Driven by Medical Visualization:
VRDA Tool
“Virtual Reality Dynamic Anatomy”

\

—

NIH - First Award 1997-2002

Methods
Optics, Computer Vision, and

Graphics

DI Custom

A 11 &
Algorithms

N

xl



Development of a Kinematic Model of Joint
Motion (Baillot, Rolland et al., 2000)

Early Feasibility Experiments

xli



First results in dynamic optical superimposition on

an optical bench system
Featured in Scientific American, April 2002
Baillot et al., Presence 2000; Argotti et al., Computers & Graphics 2002

xlii



Visualization (Head-Worn Displays)

Cakmakci Ozan, and Jannick Rolland, Head-worn displays, IEEE/OSA Journal of
Display Technology, 2(3) (September 2006).

. io iastis, L. Davis J.Covelli, L. Nguyen, R. Martins, O. Cakmakci

05-06 . 08

Tl
£ pups

Fig. 5 HMPD in use in a deployable Augmented Reality Center (ARC): (A) Schematic of the HMPD optics; (B) user wearing a
HMPD; (C) the ARC; and (D) user interncting with 3D models in the ARC, (View this ant in color at www, dekker. com. )

a

Eyepiece versus Projection HMDs

Eyepiece Optics (HWD) Head Mounted Projection Display
Porceived Virtual Image Plane Ret ro- reerCtor
H_’ 5 7
Eyoploco optics .“. ,—" Projection optics
. ; Pypil
| — T l\ ; ‘mm T-\____‘
E\ ;— . Boam-splitter
Miniature ! J Miniature
display ; display
. User's aye
'S aye .
Advantage ot
— Simple/Robust
— Color

+ Advantage — Optics size does not scale with FOV

— Simple/Robust — Lightweight

— Color — Distortion free
» Challenge — Lower aberrations than eyepiece design

— Optical weight scales with FOV « Challenge

— Distortion (electronic comp) — lllumination limited by microdisplays

— lllumination limited (miniature display) — Screen type and location

xliii
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| Specfication = Lens Fom Spaecification
Ii L] "
Foiv 70 /v

Review of e i
4 " MichaelD. Missg
HEr
“La rge FOV” T 5446568
I nm
. FoOW33 BS Fritz
Eyepiece e o
J. O Robinson ! HMD usin
C_M. Schor targin Mirror
. 3 E.H. Muller combiner
Optics Design — et
eyepece
5656521
Rolland and Hua, 2005
Encyclopedia Of Optical E?f?él.ﬁ] :—gxg‘ MicroDisalay
Engineering (Marcel Dekker) = Fez
Takayoshi Togno
4G Droessiar
Eyepicace with DOE Honeywell Inc
6181475 Mo rmstown, NJ
5959780 6147807
[FOV 50x60 [FGv 120
J5. Droessier C_Anter
D.J Retier - Bizise Migozz
\Holographic Binocular
Tilted Cat Ocular Helmet Visor
1969 5124821
‘. i Plana ’f. 1
FOVE0:E0 color [FOVED color
i / L] isplay L3 diagonal CRT
M B Chel | JP Rolland
E ALY 179, it Off-axis D:sign Off-as Design
Miniatur N7 5526183 A [ _100Ca4 OF 2000
display i —
User's eye
Imm
LED Condenser Lens
- LCcD
-~

Incident surface A

Resolution ~2 arcmins
FOV ~30 degrees
10 mm pupil [Lumus]

H. Mukawa et al. In Proc.

Kasai. Int. Symp. Wearable Computers '00. Society of Information

Display, 2008. SONY

MaIA 308110

ybnoiyj-0og <



AHMD (Advanced HMD)
Ultrawide FOV, off-axis design

Courtesy of LINK/ZYGO and
Optical Research Associates

Early 2000

AHMD Specifications

Helmet compatibility  HGU-S68 HGLLSSP
all sizes

Center of gravity Balanced
Eye refef >50 mm
15 mm
>E0%
100" Hx 50°V
El
12B0 x 1024 per eye

Spatial Uniformity Behavior
with Freeform Bezier Shapes
Fournier et al., Appl. Opt. 47 (2008) & OL 33(11) (2008)

Towards 30mm | Towards
Concave shape Tapered rod Convex shape
B )
— - | .'_'__'_l —_—‘ - = .-I‘|
| WASR— J I - i._____.‘ | - ke — J

83.5% efficiency

86.7% efﬁCiBl’lC)‘ 8.1% non-uniform
2.5% non-uniform

Changing the concavity of the shape can improve uniformity
without sacrificing efficiency

xlv
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Deployable Technology

1st Generation HMIPD

with VGA LCD microdisplays
Hua, Ha, and Rolland, Appl. Opt. 42 2003

Fisher, 96 Patent

Miniaturization of
the Optics

Deployable Rooms

3D Visualization of the Upper Airway
for Training Medics in Emergency
Intubation Procedures

o Lung Dynamics
Augmented Reality Visualization
Anand Santhanam, PhD 06




Imaging: Extended Depth of Focus Needed in Catheters

Low coherence o
Light source Reference s
A Ii
2x2 coupler i
- Detector = =
AN Control signal
=__1 ?

Coronary OCT image
J. Am. Coll. Cardiol. 2006;47:C69

Sheath
Required

PSF through Working Range [ Meemon etal. AO2008 |
l Target - Strehl ratio > 0.8 |

o=y o=

N — N
v anl Hi Vi el
[ Dynamic focus lens | Transparent Housing ".I,' M‘ |I
500 pum thick ’! i!
Strehl Ratio
. 0.928 0.914 0.959 0.889
== A = = o — — = ‘ — =7 =
~0.5mm ~1.5mm ~3mm ~4.5mm ~5.5mm

Distance from focal point to the outer surface of the exit window

XIvii
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Bessel Beam vs. Conventional

d=-2mm d=-1mm d=0mm d=1mm d=2mm

First Images of biological tissue acquired with a microlens axicon in a double
pass OCT : Images of African frog (Xenopus Laevis) tadpole located at relative
axial distances d from each medial position of its depth of focus.

K. Lee and J. Rolland Optics Letters 33 (2008) ‘

52 deg. Lens / 8g per eye

DOE i

Dilfractive Swrface

2% 45



Teleportal Dlsplay
UCF/MSU

Reddy et al., CVPR'04

42° FOV HMPD
Lightweight 595 grams - 2"d Generation HMPD using 800x600 OLED

Optical Design done in the ODALab and
HMPD Optomechanical design done by Nvis Corporation
under SBIR program 2004-2005 with the US ARMY

xlix



M-HMPD - Fabric-free,

Martins, Optics Express 15(22), 2007

See-through, Outdoor
42° FOV

Projection
Medule
Beam =
splitter
Eye o
aul
Lems L

A recent experiment with the MD
Anderson Cancer Center Orlando
to appear in JDT, Dec08




Comparison of the ARC system with the
2D display system
To appear in Special Issue of JDT, Dec 08

Average time (sec) | Average time (sec) | Average time (sec)
Subject Experiment 1 Experiment 2 Experiment 3
ARC 2D ARC 2D ARC 2D
monitor monitor monitor
Expert 1 0 2.55 0.75 11.05 1.05 13.05
Expert 2 0 0.95 1.05 8.95 0.95 11.0
Expert 3 0.45 4.05 0.95 12.05 1.55 15.05
Expert 4 0 3.95 0.55 14.95 1.05 14.05
Expert 5 0.55 2.55 1.45 8.0 0.9 16.0
Expert 6 0 3.45 1.40 9.0 1.55 13.0
Average | 0.2 2.9 1.0 10.7 ( 1.2 ) ( 13.7 )

The individual dose beams are delivered to a patient in 30-40 seconds,
Thus, a 10 second delay in decision making is highly significant

Visualization (Head-Worn Displays)

Cakmakci Ozan, and Jannick Rolland, Head-worn displays, IEEE/OSA Journal of
Display Technology, 2(3) (September 2006).

CFndo iastis, L. Davis J.Covelli, L. Nguyen, R. Martins, O. Cakmakci

EyeGlass
Display GENQ

98-00 04 05-06 07 08

Students: F. Hamza-Lup, A. Santhanam

Fig. 3 HMPD in usc in a deployable Augmented Reality Center (ARC): (A) Schematic of the HMPD optics; (B) user wearing a
HMPD; (C) the ARC; and (D) user interacting with 3D models in the ARC. (View this ant in color at www. dekker.com. )



FREE FORM OPTICS

Eyeglass Display
Ozan Cakmakci, Kidger Scholarship 05

Cakmakci & Rolland, Journal of Display Technology, (2006). ¢ H |

Exit pupil

40 cycles/mm



Dual-element Solution

Cakmakci & Rolland, OL 32(11), 2007

fl?]dorH' i
ITTOr-=# I
7

& . '
Migpadisplayis

Field of view: up to 25 FOV diagonal
Resolution: ~1.5 arcminutes

Exit pupil size: up to 12mm

Eye clearance: >15 mm

Distortion: <4% e e ey
Wavelengths: 450-650nm and while target. '
We Propose to Design Freeform ‘

Optical Surfaces whose Representations
use Local Basis Functions
(as Opposed to Global Polynomials)

= An optical surface can be represented as a
sum of basis functions

2(x,y) = Y ¢,(x, »)w,

= |n matrix form

z=0w

= To be invertible, ® must be positive definite.
equivalent to having positive eigenvalues.



Results

Surface type Average MTF Max. Distortion

40 cycles/mm

Anamorphic 26.5% 3.8%

asphere

X-Y polynomial 43.6% 2.65%

Zernike 42% 3.74% .
polynomial i
Lin. Comb. of 60.5% 3.6% _
Gaussians

Cakmakci et al., Optics Express 16(3) (2008) |

Revisiting the Dual-Element Design:
Pupil Size Expansion cakmakei et al. oL (April 2008)

May not be self luminous, thus = -..=
would require illumination
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g Microdisplay {47 diagonal)
5

B/ Freefom mimor @
£/ described with a radial 3
basis function network

Using a 16x16 set of basis functior;sﬂ.. -

liv



Won 1st place &
in the 2007 CTIA & s
Wireless .
Technology
Student

Competition
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