Dysfunctions in the endothelial cell lining of the vascular endothelium are linked with human pathogenesis of atherosclerosis, venous thrombosis, and several human viral infections. These diseases typically originate from abnormalities resulting from poor structural integrity of the tunica intima of the vascular endothelium. In this report, impulsive stimulated Brillouin scattering spectroscopy was used to assess viscoelastic properties of cells in a microfluidic chip which was designed to mimic the vascular endothelium tunica intima. Brillouin spectroscopy method enabled non-invasive data acquisition of viscoelastic measurements to understand the role of collagen type I on the anchoring of endothelial cells to the extracellular matrix.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.