In this paper it is presented recent developments in the heterodyne detection holographic techniques for studding photosensitive materials. The actual state of the technique allows simultaneous and independent measurement of the refractive index and of the absorption coefficient changes in photosensitive materials and their use to self-stabilize the fringe pattern. The modeling of the measured signal together with the fringe stabilization allow the long term-fitting of the optical properties and the study the photosensitive materials close to the saturation.
Feedback experiments by the Brazilian authors in lithium niobate [1, 2, 3] have shown that for a wide range of intensity ratios a grating with diffraction efficiency i = i can be achieved which seemingly does not change in time. Also holographic scattering is reduced in such experiments.
The total structural intensity in beams can be considered as composed of three kinds of waves: bending, longitudinal, and torsional. In passive and active control applications, it is useful to separate each of these components in order to evaluate its contribution to the total structural intensity flowing through the beam. In this paper, a z-shaped beam is used in order to allow the three kinds of waves to propagate. The contributions of the structural intensity due to the three kinds of waves are computed from measurements made over the surface of the beam with a simple homodyne interferometric laser vibrometer. The optical sensor incorporates some additional polarizing optics to a Michelson type interferometer to generate two optical signals in quadrature, which are processed to display velocities and/or displacements. This optical processing scheme is used to remove the directional ambiguity from the velocity measurement and allows to detect nearly all backscattered light collected from the object. This paper investigates the performance of the laser vibrometer in the estimation of the different wave components. The results are validated by comparing the total structural intensity computed from the laser measurements with the measured input power. Results computed from measurements using PVDF sensors are also shown, and compared with the non-intrusive laser measurements.
We describe the latest improvements in holographic interferometry that enable the real-time measurement of vibrational modes and static deformations in surfaces using low power laser illumination and a photorefractive Bi12TiO20 crystal as the recording medium. An efficient setup has been developed where the most critical elements have been optimized: target illumination and backscattered light collection, distribution of light between the object and reference beams, and stabilized system operation. Experimental results for vibration and deformation measurements are reported.
We report the operation and performance of a time-averaged holographic interferometry setup for the measurement of vibrational mode patterns in a surface, using the He-Ne laser 632.8 nm wavelength line and a photorefractive Bi12TiO20 crystal as the recording medium. The photorefractive crystal allows the real-time reversible recording and display of the hologram without any (chemical or thermal) development processing. The particular light polarization features of this sillenite family crystal allow the display of vibrational mode patterns and at the same time enable to actively stabilize the holographic setup. Good quality images are obtained even using low power laser beams requiring a long exposure time in comparatively perturbated environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.