Here, we review recent progress on the integration of plasmonic electrodes into bulk-heterojunction organic photovoltaic devices. Plasmonic electrodes, consisting of thin films of metallic nanostructures, can exhibit a number of optical, electrical, and morphological effects that can be exploited to improve performance parameters of ultrathin photovoltaic active layers. We review the various types of plasmonic electrodes that have been incorporated into organic photovoltaics such as nanohole, nanowire, and nanoparticle arrays and grating electrodes and their impact on various device performance parameters. The use of plasmonic back electrodes can impact device performance in a number of ways because the mechanisms of performance improvements are often a complex combination of optical, electrical, and structural effects. Inverted bulk heterojunction device architectures have been shown to benefit from the multifunctionality of plasmonic back electrodes as they can minimize space-charge effects and reduce hole carrier collection lengths in addition to providing improved light localization in the active layer. The use of semi-transparent plasmonic electrodes can also be beneficial for organic photovoltaics as they can exhibit a variety of optical properties such as light scattering, light localization, extraordinary transmission of light, and absorption-induced transparency, in addition to providing an alternative to metal oxide–based transparent electrodes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.