Despite the early skepticism towards the use of 193-nm immersion lithography as the next step in satisfying Moore's law, it continuous to meet expectations on its feasibility in achieving 65-nm nodes and possibly beyond. And with implementation underway, interest in extending its capability for smaller pattern sizes such as the 32-nm node continues to grow. In this paper, we will discuss the optical, physical and lithographic properties of newly developed high index fluids of low absorption coefficient, 'Babylon' and 'Delphi'. As evaluated in a spectroscopic ellipsometer in the 193.39nm wavelength, the 'Babylon' and 'Delphi' high index fluids were evaluated to have a refractive index of 1.64 and 1.63 with an absorption coefficient of 0.05/cm and 0.08/cm, respectively. Lithographic evaluation results using a 193-nm 2-beam interferometric exposure tool show the imaging capability of both high index fluids to be 32-nm half pitch lines and spaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.