Purpose: Our paper contributes to the burgeoning field of surgical data science. Specifically, multimodal integration of relevant patient data is used to determine who should undergo a complex pancreatic resection. Intraductal papillary mucinous neoplasms (IPMNs) represent cystic precursor lesions of pancreatic cancer with varying risk for malignancy. We combine previously defined individual models of radiomic analysis of diagnostic computed tomography (CT) with protein markers extracted from the cyst fluid to create a unified prediction model to identify high-risk IPMNs. Patients with high-risk IPMN would be sent for resection, whereas patients with low-risk cystic lesions would be spared an invasive procedure.
Approach: Retrospective analysis of prospectively acquired cyst fluid and CT scans was undertaken for this study. A predictive model combining clinical features with a cyst fluid inflammatory marker (CFIM) was applied to patient data. Quantitative imaging (QI) features describing radiomic patterns predictive of risk were extracted from scans. The CFIM model and QI model were combined into a single predictive model. An additional model was created with tumor-associated neutrophils (TANs) assessed by a pathologist at the time of resection.
Results: Thirty-three patients were analyzed (7 high risk and 26 low risk). The CFIM model yielded an area under the curve (AUC) of 0.74. Adding the QI model improved performance with an AUC of 0.88. Combining the CFIM, QI, and TAN models further increased performance to an AUC of 0.98.
Conclusions: Quantitative analysis of routinely acquired CT scans combined with CFIMs provides accurate prediction of risk of pancreatic cancer progression. Although a larger cohort is needed for validation, this model represents a promising tool for preoperative assessment of IPMN.
This paper contributes to the burgeoning field of surgical data science. Specifically, multi-modal integration of relevant patient data is used to determine who should undergo a complex pancreatic resection. Intraductal papillary mucinous neoplasms (IPMNs) represent cystic precursor lesions of pancreatic cancer with varying risk for malignancy. We combine radiomic analysis of diagnostic computed tomography (CT) with protein markers extracted from the cyst fluid to create a unified prediction model to identify high-risk IPMNs. Patients with high-risk IPMN would be sent for resection, whereas patients with low-risk cystic lesions would be spared an invasive procedure. We extracted radiomic features from CT scans and combined this with cyst-fluid markers. The cyst fluid model yielded an area under the curve (AUC) of 0.74. Adding the QI model improved performance with an AUC of 0.88. Radiomic analysis of routinely acquired CT scans combined with cyst fluid inflammatory markers provides accurate prediction of risk of pancreatic cancer progression.
Pancreatic neuroendocrine tumors (PanNETs) account for approximately 5% of all pancreatic tumors, affecting one individual per million each year.1 PanNETs are difficult to treat due to biological variability from benign to highly malignant, indolent to very aggressive. The World Health Organization classifies PanNETs into three categories based on cell proliferative rate, usually detected using the Ki67 index and cell morphology: low-grade (G1), intermediate-grade (G2) and high-grade (G3) tumors. Knowledge of grade prior to treatment would select patients for optimal therapy: G1/G2 tumors respond well to somatostatin analogs and targeted or cytotoxic drugs whereas G3 tumors would be targeted with platinum or alkylating agents.2, 3 Grade assessment is based on the pathologic examination of the surgical specimen, biopsy or ne-needle aspiration; however, heterogeneity in the proliferative index can lead to sampling errors.4 Based on studies relating qualitatively assessed shape and enhancement characteristics on CT imaging to tumor grade in PanNET,5 we propose objective classification of PanNET grade with quantitative analysis of CT images. Fifty-five patients were included in our retrospective analysis. A pathologist graded the tumors. Texture and shape-based features were extracted from CT. Random forest and naive Bayes classifiers were compared for the classification of G1/G2 and G3 PanNETs. The best area under the receiver operating characteristic curve (AUC) of 0:74 and accuracy of 71:64% was achieved with texture features. The shape-based features achieved an AUC of 0:70 and accuracy of 78:73%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.