In the last years the physical security in transportation systems is becoming a critical issue due to the high number of accidents and emergency situations. With the increasing availability of technological applications in vehicular environments researchers aimed at minimizing the probability of road accidents. In this paper, we propose a new platform able to discover dangerous driving behaviors. We based our application on the on-board diagnosis standard, able to provide all the needed information directly from the electronic vehicle control unit . We integrated the received data with a fuzzy logic approach, obtaining a description of the driver behavior. The overall system can take several initiatives (alarms, rpm corrections, etc.), in order to notify the driver bad behavior. The performance of the proposed scheme has been validated through a deep campaign of driving simulations.
In the modern Vehicular Ad-hoc Networks (VANET) based systems even more applications require lot of data to be exchanged among vehicles and infrastructure entities. Due to mobility issues and unplanned events that may occurs it is important that contents should be transferred as fast as possible by taking into account consistence of the exchanged data and reliability of the connections. In order to face with these issues, in this work we propose a new transfer data protocol called Fast and Scalable Content Transfer Protocol (FSCTP). This protocol allows a data transfer by using a bidirectional channel among content suppliers and receivers exploiting several cooperative sessions. Each session will be based on User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) to start and manage data transfer. Often in urban area the VANET scenario is composed of several vehicle and infrastructures points. The main idea is to exploit ad-hoc connections between vehicles to reach content suppliers. Moreover, in order to obtain a faster data transfer, more than one session is exploited to achieve a higher transfer rate. Of course it is important to manage data transfer between suppliers to avoid redundancy and resource wastages. The main goal is to instantiate a cooperative multi-session layer efficiently managed in a VANET environment exploiting the wide coverage area and avoiding common issues known in this kind of scenario. High mobility and unstable connections between nodes are some of the most common issues to address, thus a cooperative work between network, transport and application layers needs to be designed.
Nowadays one of the main task of technology is to make people's life simpler and easier. Ambient intelligence is an emerging discipline that brings intelligence to environments making them sensitive to us. This discipline has developed following the spread of sensors devices, sensor networks, pervasive computing and artificial intelligence. In this work, we attempt to enhance the Internet Of Things (loT) with intelligence and environments exploring various interactions between humans' beings and the environment they live in. In particular, the core of the system is composed of an automation system, which is made up with a domotic control unit and several sensors installed in the environment. The task of the sensors is to collect information from the environment and to send them to the control unit. Once the information is collected, the core combines them in order to infer the most accurate human needs. The knowledge of human needs and the current environment status compose the inputs of the intelligence block whose main goal is to find the right automations to satisfy human needs in a real time way. The system also provides a Speech Recognition service which allow users to interact with the system by their voice so human speech can be considered as additional input for smart automatisms.
Nowadays the focus on power consumption represent a very important factor regarding the reduction of power consumption with correlated costs and the environmental sustainability problems. Automatic control load based on power consumption and use cycle represents the optimal solution to costs restraint. The purpose of these systems is to modulate the power request of electricity avoiding an unorganized work of the loads, using intelligent techniques to manage them based on real time scheduling algorithms. The goal is to coordinate a set of electrical loads to optimize energy costs and consumptions based on the stipulated contract terms. The proposed algorithm use two new main notions: priority driven loads and smart scheduling loads. The priority driven loads can be turned off (stand by) according to a priority policy established by the user if the consumption exceed a defined threshold, on the contrary smart scheduling loads are scheduled in a particular way to don’t stop their Life Cycle (LC) safeguarding the devices functions or allowing the user to freely use the devices without the risk of exceeding the power threshold. The algorithm, using these two kind of notions and taking into account user requirements, manages loads activation and deactivation allowing the completion their operation cycle without exceeding the consumption threshold in an off-peak time range according to the electricity fare. This kind of logic is inspired by industrial lean manufacturing which focus is to minimize any kind of power waste optimizing the available resources.
Many recent research efforts have confirmed that, given the natural evolution of telecommunication systems, they can be
approached by a new modeling technique, not based yet on traditional approach of graphs theory. The branch of complex
networking, although young, is able to introduce a new and strong way of networks modeling, nevertheless they are
social, telecommunication or friendship networks. In this paper we propose a new modeling technique applied to
Wireless Sensor Networks (WSNs). The modeling has the purpose of ensuring an improvement of the distributed
communication, quantifying it in terms of clustering coefficient and average diameter of the entire network. The main
idea consists in the introduction of hybrid Data Mules, able to enhance the whole connectivity of the entire network. The
distribution degree of individual nodes in the network will follow a logarithmic trend, meaning that the most of the nodes
are not necessarily adjacent but, for each pair of them, there exists a relatively short path that connects them. The
effectiveness of the proposed idea has been validated thorough a deep campaign of simulations, proving also the power
of complex and small-world networks.
New applications in wireless environments are increasing and keeping even more interests from the developer companies and researchers. In particular, in these last few years the government and institutional organization for road safety spent a lot of resources and money to promote Vehicular Ad-Hoc Network (VANET) technology, also car manufactures are giving a lot of contributions on this field as well. In our paper, we propose an innovative system to increase road safety, matching the requests of the market allowing a cooperation between on-board devices. The vehicles are equipped with On Board Unit (OBU) and On Board Radar Unit (OBRU), which can spread alerting messages around the network regarding warning and dangerous situations exploiting IEEE802.llp standard. Vehicles move along roads observing the environment, traffic and road conditions, and vehicles parameters as well. These information can be elaborated and shared between neighbors, Road Side Unit (RSU)s and, of course, with Internet, allowing inter-system communications exploiting an Road Traffic Manager (RTM). Radar systems task it the detection of the environment in order to increase the knowledge of current conditions of the roads, for example it is important to identify obstacles, road accidents, dangerous situations and so on. Once detected exploiting onboard devices, such as Global Position System (GPS) receiver it is possible to know the exact location of the caught event and after a data elaboration the information is spread along the network. Once the drivers are advised, they can make some precautionary actions such as reduction of traveling speed or modification of current road path. In this work the routing algorithms, which have the main goal to rapidly disseminate information, are also been investigated.
Domestic environment and human interaction with services supplied by domotic devices is going to be a very interesting application field. With a domotic system is possible to achieve great interaction between human beings, environments and smart devices. The enhancing of these interactions is the main goal of this work whose intent is to improve the classic concept of domotics. The framework we developed can be used for several application fields such as lighting, heating, conditioning or water management and energy consumption. In particular, the proposed system can optimize energy consumptions by rising awareness to users that have full control of their house and the possibility to save money and reduce the impact of the energetic consumes to the earth, matching the new "green" motto requirements. In this way, the overall system wants to match the central concept of Internet Of Things (IoT) as well. From this point of view a complex automation system with smart devices make possible a more efficient way to produce, follow and manage domotic policies. Following the spread of IoT, for this work we designed and implemented new plug-and-play and ready-to-use smart devices that are part of a complex automation system that offers a user-friendly web application and allows users to control and interact with different plans of their house in order to make life more comfortable and be aware of their energy consumptions. Control and awareness arc the two key points that led us to develop the proposed system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.