We numerically design and experimentally test a SERS-active substrate for enhancing the SERS signal of a monolayer of graphene in water. The monolayer is placed on top of an array of silver-covered nanoholes in a polymer and is covered with water. Here we report a large enhancement of up to 200000 in the SERS signal of the graphene monolayer on the patterned plasmonic nanostructure for a 532 nm excitation laser wavelength. Our numerical calculations of both the excitation field and the emission rate enhancements support the experimental results. We also propose a highly compact structure for near total light absorption in a monolayer of graphene in the visible. The structure consists of a grating slab covered with the graphene monolayer. The grating slab is separated from a metallic back reflector by a dielectric spacer. The proposed structure could find applications in the design of efficient nanoscale visible-light photodetectors and modulators.
Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.
It has been shown that surface enhanced Raman spectroscopy (SERS) has many promising applications in ultrasensitive detection of Raman signal of substances. However, optimizing the enhancement in SERS signal for different applications typically requires several levels of fabrication of active plasmonic SERS substrates. In this paper, we report the enhancement of SERS signal of a single layer of graphene located on a plasmonic nano-Lycurgus cup array after placing water droplets on it. The experimental data shows that addition of water droplets can enhance the SERS signal of the single layer of graphene about 10 times without requiring any modifications to the nano-Lycurgus cup array. Using fullwave electromagnetic simulations, we show that addition of water droplets enhances the local electric field at the graphene layer, resulting in stronger light-graphene interaction at the excitation pump laser wavelength. We also show that the addition of water droplets on the graphene layer enables us to modify the band diagram of the structure, in order to enhance the local density of optical states at the Raman emission wavelengths of the graphene layer. Numerical calculations of both the excitation field enhancement at the location of the graphene layer, and the emission enhancement due to enhanced local density of optical states, support the experimental results. Our results demonstrate an approach to boost the SERS signal of a target material by controlling the band diagram of the active nanostructured SERS substrate through the use of fluidic dielectrics. These results could find potential applications in biomedical and environmental technologies.
Achieving active control of the flow of light in nanoscale photonic devices is of fundamental interest in nanophotonics. For practical implementations of active nanophotonic devices, it is important to determine the sensitivity of the device properties to the refractive index of the active material. Here, we introduce a method for the sensitivity analysis of active nanophotonic waveguide devices to variations in the dielectric permittivity of the active material. More specifically, we present an analytical adjoint sensitivity method for the power transmission coefficient of nanophotonic devices, which is directly derived from Maxwell’s equations, and is not based on any specific numerical discretization method. We show that in the case of symmetric devices the method does not require any additional simulations. We apply the derived theory to calculate the sensitivity of the power transmission coefficient with respect to the real and imaginary parts of the dielectric permittivity of the active material for both two-dimensional and three-dimensional plasmonic devices. We consider Fabry-Perot cavity switches consisting of a plasmonic waveguide coupled to a cavity resonator which is filled with an active material with tunable refractive index. To validate our method, we compare it with the direct approach, in which the sensitivity is calculated numerically by varying the dielectric permittivity of the active material, and approximating the derivative using a finite difference. We find that the results obtained with our method are in excellent agreement with the ones obtained by the direct approach. In addition, our method is accurate for both lossless and lossy devices.
We design a non-parity-time-symmetric plasmonic waveguide-cavity system, consisting of two metal-dielectric-metal stub resonators side coupled to a metal-dielectric-metal waveguide, to form an exceptional point, and realize unidirectional reflectionless propagation at the optical communication wavelength. We also show that slow-light-enhanced ultra-compact plasmonic Mach-Zehnder interferometer sensors, in which the sensing arm consists of a waveguide system based on a plasmonic analogue of electromagnetically induced transparency, lead to an order of magnitude enhancement in the refractive index sensitivity compared to a conventional metal-dielectric-metal plasmonic waveguide sensor. Finally, we show that plasmonic coaxial waveguides offer a platform for practical implementation of plasmonic waveguide-cavity systems.
Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as
tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we
introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional
nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial
waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based
techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial
metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial
resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the
incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode
is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described
using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are
either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave
three-dimensional finite-difference frequency-domain simulations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.