In this contribution, we report synthesis of water-soluble Ag−In−S /ZnS quantum dots (QDs) using low toxic precursors as well as investigation of their optical properties. The QDs were successfully obtained directly in an aqueous environment in two ways: traditional one-pot water synthesis and hydrothermal synthesis in the presence of thioglycolic acid as a stabilizing and reactivity controlling agent. The effect of hydrothermal treatment on water-soluble Ag−In−S/ZnS QDs was shown and it was found that they are resistant for 4 hours autoclaving.
In this contribution, we report an efficient synthesis of Cd-free Ag−In−S /ZnS (AIS/ZnS) quantum dots (QDs) using low toxic precursors and investigation of their optical properties. The nanocrystals (NCs) have been successfully obtained directly in aqueous media in the presence of thioglycolic acid (TGA) as stabilizing and reactivity-controlling agent. The coating with ZnS shell leads to the photoluminescence (PL) emission peak blue-shift and the emission intensity enhancement. In order to increase the quantum yield (QY) the nanocrystals were transferred to the organic phase; an influence by post-synthesis treatments of heating was investigated.
Phantoms are an imitation of biological tissue, which are physically modeling the propagation of light in biological tissues. They are required for different purposes, and also repeatability of results is achieved with it. So the fabrication of solid tissue phantoms containing high absorb or luminescence nanoparticles is actual problems for experimenters. The work describes fabrication processing and characteristics of solid tissue phantoms.
Proc. SPIE. 9917, Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish-Russian Photonics and Laser Symposium (PALS)
We report an efficient synthesis Cd-free CuInS2/ZnS (CIS/ZnS) quantum dots (QDs) using low toxic precursors and investigation of their optical properties. The nanocrystals have been obtained via reaction between the acetate salts of the corresponding metals and elemental sulfur in the presence of dodecanethiol in octadecene media at 220°C. Influence of various experimental variables, including temperature, time, ratio of Cu and In precursors were investigated. Thus, it was shown that the photoluminescence (PL) emission wavelength can be tuned by conveniently changing the stoichiometric ratio of the components. The plain CIS nanocrystals did show PL emission but with quite low PL quantum yield (QY). In order to increase the QY of QD luminescence by compensation of the surface defects of QDs cores, the process of covering with ZnS shells was done. During shelling process, increasing of QY and blue shift of emission maximum were detected.
Proc. SPIE. 9917, Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish-Russian Photonics and Laser Symposium (PALS)
KEYWORDS: Thermography, Biomedical optics, Copper indium disulfide, Tissues, Nanoparticles, Luminescence, Quantum dots, Tissue optics, Chemical elements, Temperature metrology
Control methods of temperature fields inside a tissue during laser photothermolysis are an important point to develop biomedical applications of thermal destructions of cancer. One of the most promising approaches to measure and to control of temperature is the application of luminescence nanothermometers such as CuInS2 nanoparticles. Temperature measurement can be carried out by determination of the maximum of the luminescence band. Thus, we have investigated the influence of exposure time and temperature on the position of the maximum of the luminescence band of CuInS2 nanoparticles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.