We propose and experimentally demonstrate a large-scale, high-performance photonic computing platform that simultaneously combines light scattering and optical nonlinearity. The core processing unit consists in a disordered polycrystalline lithium niobate slab bottom-up assembled from nanocrystals. Assisted by random quasiphase-matching, nonlinear speckles are generated as the complex interplay between the simultaneous linear random scattering and the second-harmonic generation based on the quadratic optical nonlinearity of the material. Compared to linear random projection, such nonlinear feature extraction demonstrates universal performance improvement across various machine learning tasks in image classification, univariate and multivariate regression, and graph classification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.