The expected increase in space and terrestrial services that include two-way fixed, SATCOM, CATV and mobile wireless services require expanding the system capacity. This expansion has created an opportunity for the utilization of the demonstrated photonic transport systems in wireless networks. System demonstrations and architectural developments have been proposed for distribution of communication services over fiber. Termed Fiber Radio and Hybrid Fiber Wireless, these systems offer the potential to improve services and reduce base station costs through increased bandwidth and ease of installation.
We have developed and demonstrated DWDM broadband photonic transport systems able to meet the requirements for IS-95 Personal Communications Services operating at 1.9 GHz and Broadband Wireless Internet operating over the band of 2.5 to 2.7 GHz. Each DWDM channel operates from 1 to 3 GHz transporting services up to 80 Km.
Solutions are being sought for low cost transmitters to meet DWDM SATCOM system requirements include extending the transmission distance to over 100 Km with a bandwidth that exceeds multiple octaves. These new requirements put high performance demands on the optical components. We have developed high performance transmitters based on electro-absorption modulated lasers (EML) that can meet SATCOM requirements. We have shown that the EML is capable of providing the required CNR of 32 dB for satellite transmission in the band of 950 to 2150 MHz over a 100 Km distance.
In addition, we are investigating a new modulation technique, Microwave Photonic Vector Modulation (MPVM), which has the potential for wideband transmission in DWDM systems.
Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.
Optical signal distribution for phased array antennas in communication system is advantageous to designers. By distributing the microwave and millimeter wave signal through optical fiber there is the potential for improved performance and lower weight. In addition when applied to communication satellites this weight saving translates into substantially reduced launch costs. The goal of the Phase I Small Business Innovation Research (SBIR) Program is the development of multi-level photonic modules for phased array antennas. The proposed module with ultimately comprise of a monolithic, InGaAs/InP p-i-n photodetector-p-HEMT power amplifier, opto-electronic integrated circuit, that has 44 GHz bandwidth and output power of 50 mW integrated with a planar antenna. The photodetector will have a high quantum efficiency and will be front-illuminated, thereby improved optical performance. Under Phase I a module was developed using standard MIC technology with a high frequency coaxial feed interconnect.
Planar metal-semiconductor-metal (MSM) devices fabricated on gallium arsenide (GaAs) are promising candidates for use as photodetectors in coherent optical communications and millimeter-wave phased-array applications. Their primary features are broad bandwidth, large responsivity, high power-handling capability, and compatibility with monolithic optoelectronic integrated circuits. We have characterized the performance of an interdigitated GaAs MSM photodetector grown by molecular beam epitaxy at 350 degree(s)C using a fast sampling technique in the time domain. A key factor for undoped GaAs material grown at this temperature is the optimal combination of both low dark current and high photocurrent. Experimental measurements are made of the temporal response of the MSM detector to optical impulses generated by a mode-locked titanium-sapphire (Ti:Al2O3) laser. Speed and responsivity are characterized over a range of optical powers and DC bias voltages. Results demonstrate that this device can switch up to 69% of the applied DC bias voltage under high optical pulsed power. Results also indicate responsivities exceeding 80 mV/pJ and bandwidths approaching 20 GHz. This high-efficiency, broad-bandwidth photodetector may find critical applications in the optical production of millimeter-wave signals by frequency conversion (mixing) and harmonic generation.
KEYWORDS: Field effect transistors, Switches, Gallium arsenide, Microwave radiation, Switching, Sensors, Photovoltaics, Resistors, Control systems, Extremely high frequency
Optical control of microwave devices particularly MMIC is a rapidly growing research area. The GaAs MESFET is the prime candidate as the optical detector for MMIC applications. In this paper a theoretical analysis is presented which predicts the photoresponse in the MESFET. The analysis includes both internal and external photovoltaic and photoconductive effects. The paper also describes the operation of an optically activated GaAs MMIC switch using GaAs MESFET as the optical detector.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.