With the latest advances in image sensor technology, cameras are able to generate video with tens of megapixels per frame. These high resolution videos streams offer great potential to be used in the surveillance domain. For ground based systems, gigapixel streams are already used with great effect as illustrated by the ICME 2019 crowd counting challenge. However, for Unmanned Aerial Vehicles (UAVs), this vast stream of data exceeds the limit of transmission bandwidth to send this data back to the ground. On board data analysis and selection is thus required to use and benefit from high resolution cameras. This paper presents a result of the CAVIAR project, where a combination of hardware and algorithms was designed to answer the question: ‘how to exploit a high resolution high frame rate camera on board a UAV?’. With the associated size, weight and power limitations, we implement data reduction by deploying deep learning on hardware to find the relevant information and transmit it to an operator station. The proposed solution aims at employing the high resolution potential of the sensor only onto objects of interest. We encode and transmit the identified regions containing those objects of interest (ROI) at the original resolution and framerate, while also transmitting the downscaled background to provide context for an operator. We demonstrate using a 35 fps, 65 Megapixel camera that this set-up indeed saves considerable bandwidth while retaining all important video data at high quality at the same time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.