We report on a new generation of laser scanners and their utilization with a 24 kW CW laser at BPP 4 mm*mrad equipped with BrightLine Weld beam shaping functionality. Herewith, excellent weld seam quality, large welding depth, high welding speed and a large working distance are achieved. Those advantages are demonstrated with application results involving keyhole welding of copper.
We report technological advances in thin-disk laser technology enabling further scaling of average output power and beam quality. A newly developed resonator design serves as a universal building block for industrial-grade thin-disk lasers from 6 to 24 kW. The robust resonator design allows for power levels beyond 12 kW from a single disk with a beam parameter product (BPP) of ~ 4 mm*mrad. By polarization combining of the output of two resonators, i.e. two laser disks, the power can be doubled to up to 24 kW while maintaining the good beam quality. The mentioned properties render the new TruDisk lasers ideal for high-throughput laser material processing. With slight modifications of our setup we also achieve a BPP of ~ 2 mm*mrad with < 8 kW output power. The optical setup provides two fiber outputs, switchable on a < 100 ms timescale, that can be equipped with different types of exchangeable processing fibers for maximum productivity and flexibility. It is possible to use TRUMPF’s BrightLine Weld (BLW) technology in combination with a 50/200 µm dual-core fiber at each fiber port. The BLW technology allows for distribution of the laser power between the 50 µm fiber core and a 200 µm ring, enabling a significant increase in productivity and quality in welding. We use BLW with a 50/200 µm dual-core fiber for welding of stator hairpins for electric drives at a quality and speed unattained so far.
New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF’s TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions.
Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications.
The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.