Most Silicon based depth and lidar sensors rely on near-infrared (NIR 750-900nm) sources to produce depth images as Silicon CMOS sensors can achieve a high quantum efficiency for an unbeatable cost at such wavelengths. Advances in Short Wave Infrared (SWIR) sensor technologies, such as Silicon-Germanium sensors, changes this paradigm and opens a new window for groundbreaking sensor designs, as SWIR can push the wavelength above retinal hazard area (⪆1400nm), allowing for much higher eye safety, due to the low penetration of those wavelengths through the eye lens. Here, we propose to use a Silicon Metalens flat optics and build upon our stacked sensor technologies to obtain a fully Silicon integrated stacked sensor at SWIR wavelengths. We will discuss the design of the stacked sensor and focus on the Silicon Metalens for multiple use-cases. We will demonstrate the results of our Silicon metalens prototype at 1550nm. We will show numerical simulations of the optical stack for eye-tracking application or wide-angle Time of Flight (TOF) and discuss the necessary trade-offs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.