This article analyzes the efficacy of the light sources and their limitations in theory and in technology. The LED's spectra were simulated by a Gaussian model to calculate the efficacy. The conventional light sources have been compared with LEDs; the results show that significant increase of LEDs' internal quantum efficiency and extraction efficiency is essential for LED application in general lighting.
We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals
with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular
lattice with lattice constant of 400 nm and air-hole and dielectric column radius of 120 nm. Large efforts have been
devoted on developing a proper mask. We obtained a perfect, clean and vertical profiled SiNX mask. The next main
effort is InP pattern transfer in Cl2+N2 plasma. Etching selectivity, smooth sidewall and etch profile are directly related
to plasma process condition, besides the quality of SiNX mask. We have optimized the N2+Cl2 plasma condition to obtain
high aspect ratio, vertical profile and smooth sidewall InP structures. Cylindrical holes (2 micron depth) and rodlike
pillars (2.4 micron height) are uniformly fabricated. An aspect ratio of 18 for 100nm trench lines has been obtained.
AFM measurement evidences that etched surfaces are smooth. The root mean square roughness of pillar and hole is 0.7
nm and 0.8 nm, respectively. The optical transmission characterization of ridge waveguides has been carried out.
Transmission spectrum of 1 micron wide waveguide has been obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.