Metallic nanoparticles are known to experience enhanced optical trap strengths compared to dielectric particles due to the increased optical volume, or polarizability. In our experience, larger metallic particles (~micron) are not easily trapped because momentum effects due to reflection become significant. Hybrid particles comprised of both metal and dielectric materials can circumvent this limitation while still utilizing a larger polarizability. Heterogeneous nanosystems were fabricated by embedding/coating silica nanoparticles with gold or silver in varying amounts and distributions. These compound particles were manipulated via optical tweezers, and their trapping characteristics quantitatively and qualitatively compared to homogeneous particles of comparable size. The parameters explored include the dependence of the trapping force on the percentage of loading of gold, the size of the embedded colloids, and the distribution of metal within the surrounding matrix or on its surface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.