The lack of tools to rapidly identify and align data from different sources is a critical, needed capability for the Department of Defense especially when it comes to automated ingestion. In the current open source Karma Mapping Tool, the Steiner tree optimization algorithm suggests semantic types during data alignment. We hypothesize that Machine Learning (ML) may perform better than the Steiner approach on a subset of column types, or “labels”, where 1.) the data is extremely similar in structure and content and 2.) inferring column type correctly is highly dependent on the interrelated components of the dataset. In this session we discuss the experimental design, our initial results, and a path toward future work in broader applications beginning with intelligence analysis in the maritime domain. The initial results from this experiment show there is promise in using ML to do column prediction in analysis environments where there are many similar or overlapping data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.