A robot scanning system consisting of a portable laser 3-D scanner and an industrial robot is demonstrated. In this system, the scanner is precalibrated by the traditional nonlinear two-step approach. In addition, by using a criterion sphere as the calibration object, a new robot tool center point (TCP) calibration approach is proposed for calibrating the relation between the precalibrated laser 3-D scanner and the robot. In this approach, two different translational motions of the robot are first made to determine the rotation part, and then at least three different rotational motions are made to determine the translation part. During the process, the extrinsic camera parameters are not recalibrated for each robot motion, so the calibration errors brought by camera calibration can be decreased. Moreover, the calibration error due to robot positioning error can be decreased by making use of the differences of different robot positions in calculations. An experiment was performed on a portable laser 3-D scanner and an ABB IRB-4400 industrial robot to test the validity of the proposed calibration approach. The experimental results show that this approach is simple and accurate compared to the conventional robot TCP calibration approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.