A compact system based on mid-infrared quantum cascade laser (QCL) operated in room temperature was developed for the simultaneous monitoring of NO, NO2 and NH3 in the air. Laser beams of three QCLs with central wavelength located at 1900 cm-1, 1600 cm-1, 1103.4 cm-1 were coupled to pass through the 60m long gas cell together. With the technology of time division multiplexing, wavelength modulation spectroscopy (WMS) signals of three lasers can be detected at adjacent scan process. The real-time second harmonic analysis was implemented to achieve simultaneous detection of NO, NO2 and NH3. A minimum detection limit (MDL) of 0.2ppb for NO, 0.12ppb for NO2 and 0.1ppb for NH3 with an optimum integration time around 100 seconds can be achieved for this setup. An ambient monitoring of three gasses during 5 hours was performed to inspect the local air quality.
In this paper, the reconstruction of axisymmetric temperature and H2O concentration distributions in a flat flame burner is realized by tunable diode laser absorption spectroscopy (TDLAS) and filtered back-projection (FBP) algorithm. Two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1) are selected as line pair for temperature measurement, and time division multiplexing technology is adopted to scan this two H2O absorption transitions simultaneously at 1 kHz repetition rate. In the experiment, FBP algorithm can be used for reconstructing axisymmetric distributions of flow field parameters with only single view parallel-beam TDLAS measurements, and the same data sets from the given parallel beam are used for other virtual projection angles and beams scattered between 0° and 180°. The real-time online measurements of projection data, i.e., integrated absorbance both for pre-selected transitions on CH4/air flat flame burner are realized by Voigt on-line fitting, and the fitting residuals are less than 0.2%. By analyzing the projection data from different views based on FBP algorithm, the distributions of temperature and concentration along radial direction can be known instantly. The results demonstrate that the system and the proposed innovative FBP algorithm are capable for accurate reconstruction of axisymmetric temperature and H2O concentration distribution in combustion systems and facilities.
The evolution of shock wave generated by discharge in laser chamber is one of the key factors which affect laser beam
quality, discharge stability, and repetition rate of TEA gas laser. In this paper, Mach-Zehnder interferometer is applied to
observe both the longitudinal and transversal shock waves between electrodes as well as the acoustic waves originated
by preionization in the discharge pumping zone of TEA gas laser. By changing the discharge voltage, gas pressure and
gas composition concentration, the developing processes in different conditions are compared and analyzed. It is
observed that the shock waves originating from cathode is different from the anode's ones even in the symmetric
electrode construction. And the carbon dioxide concentration in helium-buffered working gas can affect the speed of the
wave obviously. However, the increasing trend of shock wave speed, when increasing discharge voltage or reducing
discharge gas pressure, is inconspicuous.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.