In the age of information society and internet the requirements of fast transfers of large data streams for different applications are growing day by day. Killer-applications like teleconferencing, video-on-demand, online-games, virtual reality etc. are waiting in the wings. The optical network technology using the great bandwidth of glass fibre is the most suitable technology for these demands. Not only glass fibre is required, but also a broad range of optical components, such as multiplexers, demultiplexers, optical switches, optical attenuators, splitters and combiners, which are usually produced in silica technology. Polymeric materials are becoming more and more interesting for these applications, since they promise for instance lower power consumption and a reduction of production costs compared to their silica based pendants. Polycyanurate ester resins are a relatively new class of high-performance polymers with outstanding properties, for example high thermal stability, low optical loss, low dielectric constant, good adhesion and outstanding mechanical properties. This paper focuses on optical loss and birefringence of such materials at 1550 nm. The results lead the way to optimization for use in integrated optics and for the production of embedded waveguides and devices.
Polymeric optical planar waveguide devices such as optical switches, optical arrayed-waveguide grating (AWG) multiplexer/demultiplexer, optical add/drop multiplexer are promising for both of optical WDM networks and access network. For investigating such polymer devices, new polymeric waveguide materials were developed and different polymer integrated optical devices including interferometric-type optical switches, digital-optical switches (DOS), hybrid polymer/silica vertical coupler switches (VCS), polymer AWG multiplexer and athermal all- polymer AWG multiplexer have been studied.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.