The Ultraviolet Explorer (UVEX) mission is built on three scientific pillars: (I) Exploring the low-mass, low-metallicity galaxy frontier; (II) Providing new views of the dynamic universe, and (III) Leaving a broad legacy of modern, deep synoptic surveys. The deep, synoptic all-sky survey includes the Galactic Plane and Magellanic Clouds and achieves depths and resolution matching modern optical/IR surveys with Rubin, Roman, and Euclid. UVEX will follow up the aftermath of GW-detected NS mergers and provide the first rapid UV spectroscopic follow-up of transients. The UVEX payload consists of a single instrument with simultaneous FUV and NUV imaging over a wide (12 deg2) FOV and sensitive R>1000 spectroscopy over a broad band from 1150 – 2650 Å. Placed in a highly elliptical, TESS-like orbit, UVEX achieves low background and high observing efficiency. Frequent ground contacts and rapid slew capability enable UVEX to promptly follow up targets of opportunity, providing the first rapid, deep UV imaging and spectroscopic follow-up capability.
The Faint Intergalactic Medium Redshifted Emission Balloon (FIREBall-2) is a UV multi-object spectrograph designed to detect emission from the circumgalactic and circumquasar medium at low redshifts (0.3 < z < 1.0). The FIREBall-2 spectrograph uses a suborbital balloon vehicle to access a stratospheric transmission window centered around 205 nm and is fed by a 1-m primary parabolic mirror and a 2-mirror field corrector that allows an ≈11’ x 35’ field of view. The slit-mask spectrograph can access dozens of galaxy targets per field, with each target spectrum read out on a UV electron-multiplying CCD detector. Following a flight in 2018, several refurbishments and modifications were made to the instrument and telescope to prepare for additional flight opportunities. Here we present an overview of upgrades and improvements made since the previous flight and discuss the 2023 field campaign, which culminated in a flight from Fort Sumner, New Mexico in September, 2023.
The Faint Intergalactic-medium Redshifted Emission Balloon (FB-2), a collaborative NASA/CNES suborbital balloon telescope, targets the mapping of faint UV emissions from the circumgalactic medium around low-redshift galaxies. The initial September 2018 flight encountered challenges, including a balloon breach and subsequent damage during landing, impacting the two large telescope mirrors and the critical focal corrector. Likely due to landing shock, the focal corrector experienced misalignment beyond tolerance, necessitating reevaluation and realignment. This paper outlines a comprehensive approach to realigning the focal corrector using a computer-generated hologram (CGH) and a Zygo interferometer for feedback. The CGH enables precise alignment corrections in various degrees of freedom, while interferometer feedback aids in reducing aberrations. The paper details the methodology for optical alignment, surface measurement, and performance evaluation of the focal corrector, emphasizing its successful integration into the FB-2 spectrograph in early 2023 for the September 2023 flight.
The balloon-borne UV telescope Faint Intergalactic Red-shifted Emission Balloon (FIREBall-2) was launched from Fort Sumner, NM on September 25, 2023, for its second attempted flight. The flight was unexpectedly terminated at 10 hours due to a mechanical issue, and no science data was obtained; however, this short flight provided an excellent opportunity to test the in-flight communications system. Testing the communication system pre-flight was challenging, and an accurate simulation of signal reception and communication errors expected during flight was not possible. From launch to landing, only a single packet was dropped. Had the flight continued for the expected duration, the success up to early termination gives confidence that the communications systems would have continued to meet our expectations. While this test was highly successful, some areas for improvement were identified and will be addressed before FIREBall-2’s next flight.
Since the start of science operations in 1993, the twin 10-meter W. M. Keck Observatory (WMKO) telescopes have continued to maximize their scientific impact to produce transformative discoveries that keep the U.S. observing community on the frontiers of astronomical research. Upgraded capabilities and new instrumentation are provided though collaborative partnerships primarily with the Caltech and University of California instrument development teams and through additional collaborations with the University of Notre Dame, the University of Hawaii, Swinburne University of Technology, industry, and other organizations. This paper summarizes the status and performance of observatory infrastructure projects, technology upgrades, and new additions to the suite of observatory instrumentation. We also provide a status of instrumentation projects in early and advanced stages of development that will achieve the goals and objectives summarized in the 2023 Keck Observatory strategic plan. Developed in collaboration with the WMKO science community, the Keck strategic plan sets our sites on 2035 and meets goals identified in the Astro2020 Decadal Survey.
The payload of the Faint Intergalactic Redshifted Emission Balloon (FIREBall-2), the second generation of the FIREBall instrument (PI: C. Martin, Caltech), has been calibrated and launched from the NASA Columbia Scientific Balloon Facility in Fort Sumner, New Mexico. FIREBall-2 was launched for the first time on the September 22, 2018, and the payload performed the very first multi-object acquisition from space using a multi-object spectrograph. Our performance-oriented paper presents the calibration and last ground adjustments of FIREBall-2, the in-flight performance assessed based on the flight data, and the predicted instrument’s ultimate sensitivity. This analysis predicts that future flights of FIREBall-2 should be able to detect the HI Lyα resonance line in galaxies at z ∼ 0.67, but will find it challenging to spatially resolve the circumgalactic medium.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.