In the last few years, the use of machine learning has emerged in the field of distributed fiber optic sensors as a promising approach to enhance their performance and provide new capabilities. In this study, we use machine le arning for simultaneous measurements of temperature and humidity in polyimide (PI)-coated optical fibers based on Brillouin Brillouin optical frequency domain analysis (BOFDA). Different non-linear machine learning algorithms are employed, namely polynomial regression, decision trees and artificial neural networks (ANNs), and their discrimination performance is benchmarked against that of the conventional linear regression. The performance is evaluated using leave-one-out cross-validation to ensure that the models are reliable and able to generalize well on new data. We show that nonlinear machine learning algorithms outperform the conventional linear regression and thus could pave the way towards simultaneous cost-effective tempera ture and humidity distributed sensing, which has the potential to find attractive new applications in the field of civil and geotechnical engineering, from structural health monitoring of dikes and bridges to subsea cables and long pipelines corrosion detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.