Micro lens arrays made of glass are optical components which, due to their complexity, can fulfill the function of many larger lenses at the same time. Optical arrangements can thus be miniaturized and made lighter. The production of such elements can be a challenge, especially for medium and small quantities. Therefore, at the ifw Jena, two direct production methods of such elements are being investigated: laser ablation with ultrashort pulsed (USP) lasers and ablation with a short-pulsed CO2-laser respectively polished with a cw-CO2 laser. The experiments show a good homogeneity of the lenses as well as a high process speed.
In this article a new way of fabricating micro-optics, especially micro lens arrays (MLA’s) with lens heights up to several hundreds of micrometers is shown. Existing methods of MLA fabrication are compared to the new approach. Also applications are presented. A novel short pulse CO2-laser system is used for the production, which allows pulse lengths down to 200 ns. In combination with a common galvo-scanner system, the micro lenses are preformed by an ablation process in tens of seconds. Here, different lens diameters, lens radii and array sizes can be produced. In a second step, the MLA is fire-polished with the same laser source. For this process step the laser is switched to cw-mode. The preformed lenses melt and get a defined radius as a result of the surface tension of the molten glass. Measurements of the resulting geometry are be presented. As the results show, the laser based micro lens array fabrication process has a high reproducibility, very high flexibility, short process times and can process different glasses like borosilicate, soda lime or fused silica.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.