Sub-micron waveguides and cavities have been shown to produce the confinement of elastic and optical waves in the
same devices in order to benefit from their interaction. It has been shown that square and honeycomb lattices are the
most suitable to produce simultaneous photonic and phononic band gaps on suspended silicon slabs. The introduction of
line defects on such "phoxonic" (or optomechanical) crystals should lead to an enhanced interaction between confined
light and sound. In this work we report on the experimental measurements of light guiding through waveguides created
in these kinds of two-dimensional photonic crystal membranes. The dimensions of the fabricated structures are chosen to
provide a "phoxonic" bandgap with a photonic gap around 1550 nm. For both kinds of lattice, we observe a high-transmission
band when introducing a linear defect, although it is observed for TM polarization in the honeycomb lattice
and for TE in the square. Using the plane-wave expansion and the finite element methods we demonstrate that the guided
modes are below the light line and, therefore, without additional losses beside fabrication imperfections. Our results lead
us to conclude that waveguides implemented in honeycomb and square lattice "phoxonic" crystals are a very suitable
platform to observe an enhanced interaction between propagating photons and phonons.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.