The design and analysis of the steel bench is presented together with the design, analysis, and prototyping of the optomechanical elements. Particular attention is given to the evolution of the derotation system design (K-mirror), which has been strongly improved, and to the prototyping plan.
The Multi-conjugate adaptive Optics Relay For ELT Observations (MORFEO), formerly MAORY, is the Multi-conjugate Adaptive Optics (MCAO) relay for the Extremely Large Telescope (ELT). The instrument provides the MCAO correction to two instruments at the ELT Nasmyth platform. One first light instrument fed by MORFEO is the Multi-AO Imaging Camera for Deep Observations (MICADO) that will provide imaging, astrometric, spectroscopic and coronographic observing modes. A second generation instrument, still to be defined, will occupy the other port of MORFEO. The delivered MCAO-corrected Field of View (FoV) of MORFEO is 2 arcmin. In this paper we present the possible fine optical alignment and recollimation strategies to bring the relay optics within the diffraction-limited performances.
More than one MORFEO fine Optical Alignment (MOA) strategy is currently under study in the development of the instrument towards its final design review. Given the complexity and the size of this new generation instrument diversifying and enlarging the set of possible techniques for the system alignment is an effective and more robust approach. As the Alignment Integration Verification (AIV) phase will develop the different strategies will be deployed and tested to possibly spot the best method (if any) among the others which will then be kept as back-up alternatives. One technique relies on the metrology of out-of-focus PSF images as proxy of the system pupil to detect the main optical aberrations in the instrument. This method has been proposed by Tokovinin & Heathcote [1] for a 2-mirror telescope. The challenge to be faced with MORFEO is given by the large number of optical elements and the related pseudo wavefront sensing limitations. Other techniques under study involve the use of wavefront sensing, phase diversity techniques and aberrations spotting using the MORFEO deformable mirrors. The MOA is meant to be performed both at the first AIV operations and at the periodic recollimations of the system during its nominal operation lifetime. The paper reports the results of a preliminary set of simulations carried out using a OpticStudio-Matlab simulator for the Donut technique.SHARK-NIR is an instrument which provides direct imaging, coronagraphic imaging, dual band imaging and low resolution spectroscopy in Y, J and H bands, taking advantage of the outstanding performance of the Large Binocular Telescope AO systems. Binocular observations will be provided used in combination with SHARK-VIS (operating in V band) and LMIRCam of LBTI (operating from K to M bands), in a way to exploit coronagraphic simultaneous observations in three different wavelengths.
A wide variety of coronagraphic techniques have been implemented in SHARK-NIR, ranging from conventional ones such as the Gaussian Lyot, to others quite robust to misalignments such as the Shaped Pupil, to eventually techniques more demanding in term of stability during the observation, as the Four Quadrant; the latter is giving in theory and simulations outstanding contrast, and it is supported in term of stability by the SHARK-NIR internal fast tip-tilt loop and local NCPA correction, which should ensure the necessary stability allowing this technique to operate at its best.
The main science case is of course exoplanets search and characterization and young stellar systems, jets and disks characterization, although the LBT AO extreme performance, allowing to reach excellent correction even at very faint magnitudes, may open to science previously difficult to be achieved, as for example AGN and QSO morphological studies.
The institutes participating to the SHARK-NIR consortium which designed and built the instrument are Istituto Nazionale di Astro Fisica (INAF, Italy), the Max Planck Institute for Astronomy (MPIA, Heidelberg, Germany) and University of Arizona/Steward Observatory (UoA/SO, Tucson, Az, USA). We report here about the SHARK-NIR status, that should achieve first light at LBT before the end of 2022.MORFEO, formerly known with the acronym MAORY, is the Multi-Conjugated Adaptive Optics (MCAO) module for the European Extremely Large Telescope (ELT). MORFEO is designed to feed the Near Infrared (NIR) camera MICADO with both MCAO and Single-Conjugated AO (SCAO) operation modes. The optical configuration provides a one to one imaging of the telescope focal surface on two ports (one feeding MICADO and the other dedicated to a future instrument) and it is equipped with two post-focal deformable mirrors together with the Laser Guide Star (LGS) and Natural Guide Star (NGS) channels for wavefront sensing and tomographic reconstruction.
In this paper, we present the status of the optical configuration at the completion of the Preliminary Design Review (PDR). We will focus our attention on the tolerance analysis of the elements, consisting in both manufacturing and alignment, to provide the expected performances of the instrument after initial integration. We will also present the outcomes of the stability analysis of the instrument, consisting in rigid-body motions and thermoelastic deformations of the structure and optomechanics, used to define the procedures and benchmark to maintain the instrument performances during operation. Details on the integrated modelling, specifically developed for this purpose, will be provided.The question is, what are the challenges for future missions and what can be done to improve performance and scientific output. The exploration of Mars is ongoing. NASA and ESA are planning future missions to the outer planets like to the icy Jovian moons. Exploration of asteroids and comets are in focus of several recent and future missions. Furthermore, the detection and characterization of exo-planets will keep us busy for next generations.
The paper is discussing the challenges and visions of imaging sensors for future planetary exploration missions. The focus of the talk is monolithic VIS/NIR- detectors.