Patent ductus arteriosus (PDA), a common condition among preterm infants, increases the risk of intraventricular hemorrhage, bronchopulmonary dysplasia, and death in afflicted individuals. Current clinical treatment of PDA relies on use of the drug indomethacin to close the ductus arteriosus. In the present study, we have investigated the effect of indomethacin on cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral mean transit time (MTT) in newborn piglets using computed tomography (CT) perfusion. Twenty newborn piglets divided by age into two groups, less than 12 hours of age (n = 10) and greater than 12 hours of age (n = 10) were studied. Five piglets in each group received indomethacin treatment (0.2 mg/kg infused over 30 min) while remaining piglets served as controls. No significant changes in CBF were observed in control groups. In both indomethacin treated groups, average CBF decreased 32.3% and 34.3% (P > 0.05) below baseline immediately post infusion in piglets less than and greater than 12 hours of age respectively. Piglets less than 12hours of age treated with indomethacin also exhibited a delayed increase in CBF, maximum average increase of 41.7% (P > 0.05) above baseline at 210 min post infusion, a response not observed in the corresponding group of piglets greater than 12 hours of age. The observed age dependent response may be due to functional/anatomical closure of the PDA.
Severely premature infants are often at high risk of cerebral hemorrhage or ischemic injury due to their inability to properly regulate blood flow to the brain. If blood flow is too high, the infant is at risk of cerebral hemorrhage, while too little blood flow can result in ischemic injury. The purpose of this research is to design and develop a means of non-invasively measuring cerebral blood flow (CBF) with near infrared spectroscopy (NIRS). Such a device would greatly aid the diagnosis and monitoring of afflicted infants. Previous attempts to measure CBF with NIRS have achieved limited success. In this study we acquired high signal-to-noise NIR spectrum from 600 to 980 nm with a cooled CCD spectrometer. This spectrometer enables the differential path length factor (DPF) to be estimated with accuracy using a second derivative technique described by Matcher et al. The validity of our new approach is determined via direct comparison with a previously validated computed tomography (CT) method. Three newborn piglets were studied. CBF measurements were performed at various partial arterial CO2 tensions (PaCO2) using both the NIRS and CT methods. The results of the two methods correlate well with a relationship of CBFCT equals -4.30 + 1.05 CBFNIRS (r2 equals 0.96).
A technique utilizing laser induced fluorescence has been developed to obtain direct real-time imaging of the coronary artery network for open heart surgery applications. Both excimer pumped dye and cw argon-ion laser radiation transmitted through a fused silica fiber were used as laser sources to irradiate swine, bovine, and human cadaver hearts whose coronary arteries had been injected with strongly fluorescent dyes. The laser induces fluorescence originating from within the coronary arteries and detected by the surgeon's eye, allows the entire coronary network to be directly viewed. A comparison between laser induced fluorescence and the use of direct visual inspection of arteries following injection of the dye Cardio-Green(R) as well as conventional thermal imaging is presented. The limitations imposed on each technique by layers of fat on top of the coronary arteries are also described. The possibility of using these techniques to detect mechanical or laser beam perforations during laser endarterectomy procedures is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.