The problem of many cities in Europe with the new limit values of PM10 of the Directive 1999/30/EC and the discussion about the implementation of PM2.5 monitoring measurements is leading to discuss also about the spatial distribution of PM concentrations.
The general objective of ICAROS NET is the development and demonstration of a networked interactive computational environment that allows the integration and fusion of environmental information from remote sensing observations, ground air quality measurements, and pollution transport models in order to minimize uncertainty in decision-making regarding operational air pollution control and abatement. The method of the platform and some results of the ICAROS NET campaigns were described already in the paper SPIE 5571-38.
In the case of Munich it was possible to integrate, besides the PM10 concentration determination, the evaluation of PM2.5 and PM1 concentrations. Because of the weather conditions (clouds) and the general problem of permanent background aerosol in the area of Bavaria it was difficult to find out a good clear satellite reference image for the platform. Therefore, background aerosol (urban, suburban and rural) is added. The growth of the particles with a rising relative humidity is considered in the first layer data fusion module. Finally, PM concentrations of new satellite images and results of the ICAROS NET platform are presented and evaluated.
The air quality in Munich is monitored by the measurement network of the Bavarian Agency for Environmental Protection. Additional information can be provided from retrievals of optical thickness and corresponding particle concentrations from satellite images in an area of approximately 100 km x 100 km (depending on the satellite sensor used). The satellite measures the optical thickness of the entire atmosphere, which has to be attributed mainly to the mixing layer. The mixing layer height is determined either by remote sensing, by radiosondes, or by numerical models of the boundary layer. The corrected optical thickness of the satellite images can be interpreted as the particle concentration in the mixing layer. Data from the ground-based monitoring network and from satellite retrievals are fused in the ICAROS NET platform.
This platform is applied to supply additional information on the air quality in the Munich region and it is tested as well as evaluated during field campaigns in summer and winter. The adaptation to the Munich region covers the development of routines for the collection of data, for example from the measuring network, and the disposal of information, which were defined by the Bavarian agency for environmental protection. During measurement campaigns in and around Munich PM 10, PM 2.5 and PM 1.0 concentrations and mixing layer heights by remote sensing (SODAR, ceilometer, WTR) were determined. Temporal variations of the concentration, the spatial distribution (3 measurement locations) and concentration conditions for selected particle sizes are presented.
Our recent work has demonstrated the feasibility of using satellite-derived data to draw quantitative maps of particulate loading within the planetary boundary layer. Our method, when used in conjunction with atmospheric dispersion models and ground data, can provide a comprehensive estimate of tropospheric pollution from particulate matter. Information filtering techniques are used to reduce the error of the information fusion algorithm and, consequently, produce the best possible estimate of tropospheric aerosol. Two data filtering methods have been used and their effectiveness with regard to overall error reduction is determined in this work. The first one is based on a weight scheme to take into account an empirical estimate of local error and/or uncertainty in input data. The second uses a modified Kalman filter for error reduction. The effectiveness of each of the filtering techniques depends on factors such as relative error variance across the computational domain, and precision of model input, i.e. on the accuracy of the ground emissions inventory and the reliability of measured ambient aerosol concentrations. The ICAROS NET fusion method was applied in the greater area of Athens, Greece over several days of observation in order to assess conclusively the adequacy of the information fusion filters employed.
Recent studies worldwide have revealed the relation between urban air pollution, particularly fine aerosols, and human health. The current state of the art in air quality assessment, monitoring and management comprises analytical measurements and atmospheric transport modeling. Earth observation from satellites provides an additional information layer through the calculation of synoptic air pollution indicators, such as atmospheric turbidity. Fusion of these data sources with ancillary data, including classification of population vulnerability to the adverse health effects of fine particulate and, especially, PM10 pollution, in the ambient air, integrates them into an optimally managed environmental information processing tool. Several algorithms pertaining to urban air pollution assessment using HSR satellite imagery have been developed and applied to urban sites in Europe such as Athens, Greece, the Po valley in Northern Italy, and Munich, Germany. Implementing these computational procedures on moderate spatial resolution (MSR) satellite data and coupling the result with the output of HSR data processing provides comprehensive and dynamic information on the spatial distribution of PM10 concentration. The result of EO data processing is corrected to account for the relative importance of the signal due to anthropogenic fine particles, concentrated in the lower troposphere. Fusing the corrected maps of PM10 concentration with data on vulnerable population distribution and implementation of epidemiology-derived exposure-response relationships results in the calculation of indices of the public health risk from PM10 concentration in the ambient air. Results from the pilot application of this technique for integrated environmental and health assessment in the urban environment are given.
High spatial resolution (HSR) satellite observations, while not frequent enough to follow air pollution's dynamic fluctuations, can provide spatially resolved information related to urban air quality. More specifically, HSR satellites can provide independent "spatial measurements" on the columnar aerosol optical thickness in the visible (AOTV). When normalized to ground level, AOTV can be correlated to fine aerosol concentrations, and when monitored over long or representative periods it could be used as an air-quality indicator to bridge the gap between "point measurements" by ground-based sampling, and "spatial estimations" by atmospheric modelling. We briefly review in this paper the methods we developed to map AOTV over urban areas from HSR satellites; we then describe qualitative AOTV validation procedures for the case of Athens. We finally present preliminary quantitative results from a pilot application where we compared data on air quality acquired using the three tools (i.e., satellite observations, atmospheric modelling and ground measurements) over two polluted European sites. This comparison showed good agreement between satellite-derived AOTV, on the one hand, and ground-level aerosol precursor concentrations and modelling-derived pollutant flow patterns on the other. These preliminary results encouraged an in-depth investigation of the benefits from the complementary use of these three techniques for integrated air-quality monitoring. During four pilot campaigns foreseen in the framework of the ICAROS NET project, we plan to collect detailed atmospheric data and run numerical models in conjunction with the satellite passages.
Integrated air quality management requires considering many information classes simultaneously, including environmental quality data, health impact pathway models, economic analyses, the respective regulatory framework, and the priorities of the concerned stakeholders. Integrated air pollution assessment in particular includes accurate representation of the pollution distribution in time and space, identification of the main emission sources, and evaluation of the possible alternatives for coping with the observed environmental burden. The current state of the art in air quality assessment, monitoring and management comprises analytical measurements and atmospheric transport modeling. Earth observation from satellites may provide an additional information layer through the calculation of synoptic air pollution indicators, such as the tropospheric aerosol optical thickness. This paper outlines a paradigm for efficient data and model fusion for the integrated assessment of the health impact due to airborne chemicals. The information management techniques employed and the problems due to the multidisciplinary nature of the phenomena analyzed are highlighted. Selected examples from using this methodology for the assessment of air quality in the European Union are given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.