A novel instrument that employs a high-finesse optical cavity as an absorption cell has been developed for sensitive measurements of gas mixing ratios using near-infrared diode lasers and absorption spectroscopy techniques. The instrument employs an off-axis trajectory of the laser beam through the cell to yield an effective optical path length of several kilometers without significant unwanted effects due to cavity resonances. As a result, a minimum detectable absorption of ~1.4x10-5 over an effective optical path of 4,200 meters was obtained in a 1.1-Hz detection bandwidth to yield a detection sensitivity of ~3.1x10-11 cm-1 Hz-1/2. The instrument has been applied for measurements of CO, CH4, C2H2, and NH3 in the 1530-1650 nm range, and stable isotopes of CO2 (13CO2, 12CO2, 12C16O18O) near 2052 nm.
In this work the spectral characteristics of a new type of mid-infrared diode laser are discussed and an application for CO trace gas detection is demonstrated. The InGaAsSb/AlGaAsSb QW diode lasers operating in the spectral range of 2.0 - 2.7 micrometer in continuous wave (CW) regime at room temperature (RT) were developed last year. Earlier, the spectral range of RT CW operation for diode lasers was limited by 2.0 - 2.1 micrometer. The extension of wavelength to 2.7 micrometer was achieved for InGaAsSb/AlGaAsSb quantum well (QW) lasers by employing for QWs new quasi-ternary InGaSb(As) compositions that are out of the miscibility gap for InGaAsSb materials. Single spatial mode ridge lasers emitting at 2.2 - 2.7 micrometer have parameters similar to those of the infrared lasers with (lambda) less than 2 micrometer widely used for spectroscopic application. At operating currents about 80 - 200 mA and temperatures up to +50 degrees Celsius, these lasers emit CW output power of several milliwatts. Investigation of the laser spectra has revealed the current and temperature ranges where a single longitudinal mode dominates with side mode suppression of 22 - 25 dB. The dominant mode can be tuned in wavelength by varying current or temperature. The lasers were used to record high-resolution CO absorption lineshapes (2v band near 2.3 micrometer) in a static cell (14.9-cm path). Probed CO transitions were selected for applications to in situ measurements in high- temperature combustion flows. In general, the measured CO absorption lineshapes agreed with theoretical Voigt profiles calculated using the HITRAN database to within 2%. For a minimum detectable absorbance of 0.01% and a 1-meter long path, the CO measurement sensitivity for the probed R30 transition near 2.302 micrometer was 5 - 10 ppm at 1000 K. This value is about two orders of magnitude better than the sensitivity reported for CO detection with conventional diode lasers that probe transitions in the 3v band near 1.56 micrometer.
KEYWORDS: Temperature metrology, Combustion, Absorption, Sensors, Carbon monoxide, Control systems, Semiconductor lasers, Multiplexing, Gas lasers, Adaptive control
A multiplexed diode-laser absorption sensor system, comprised of two distributed feedback (DFB) InGaAsP diode lasers and fiber-optic components, has been developed to non-intrusively measure gas temperature and H2O concentration over a single path in the combustion region of a 50-kW purposed annular dump combustor. The wavelengths of the DFB lasers were independently current-tuned at 10-kHz rates across H2O transitions near 1343 nm and 1392 nm. Temperature and water vapor concentration were determined from the measured absorbances. In addition, measurements of CO, C2H2, and C2H4 concentrations in the exhaust were determined from absorption spectra recorded using a fast-sampling probe, a multi-pass absorption cell, an external cavity diode laser (ECDL), and a distributed feedback diode laser (DFB). The ECDL was tuned over the CO R(13) transition near 1568 nm and the C2H2 P(17) transition near 1535 nm, and the DFB laser was tuned over selected C2H4 transitions near 1646 nm. A correlation was established between the magnitude of the measured temperature oscillations in the combustion region and measured concentrations of CO and hydrocarbons in the exhaust. Adaptive control strategies were applied to maximize the coherence of the temperature oscillations and thus optimize the combustor performance. The closed-loop control system was able to adaptively optimize the phase and amplitude of the applied forcing within 100 ms, and the forcing frequently within 10 seconds. These results demonstrate the applicability of multiplexed diode-laser absorption sensors for rapid, continuous measurements and control of multiple flowfield parameters, including trace species concentrations, in high-temperature environments.
A multiplexed diode-laser absorption sensor system, comprised of two distributed feedback (DFB) InGaAsP diode lasers and fiber-optic components, has been developed to non-intrusively measure gas temperature and H2O concentration over a single path in the combustion region of a 50-kW model pulsed incinerator. The wavelengths of the DFB lasers wee independently current-tuned at 10-kHz rates across H2O transitions near 1343 nm. Temperature was determined from the ratio of measured peak absorbencies and used for closed-loop control of the combustor. In addition, measurements of CO, CO2, and C2H4 concentrations were determined from absorption spectra recorded in the incinerator exhaust using a fast-sampling stainless steel, water-cooled probe and a multi-pass absorption cell. An external cavity diode laser was tuned over the CO R(13) transition near 1568 nm and the CO2 R(16) transitions near 1572 nm, and a DFB laser was tuned over selected C2H4 transitions near 1646 nm. A correlation was established between the magnitude of the observed temperature fluctuations and the measured CO concentration in the exhaust. The amplitude of temperature fluctuations was controlled in a feedback loop by adjusting the relative phase between the primary and secondary forced air flows. The results obtained demonstrate the applicability of multiplexed diode laser absorption sensors for rapid, continuous measurements and control of multiple flowfield parameters, including trace species concentrations, in high- temperature combustion environments.
A diode-laser sensor system has been applied to measure the concentrations of NO, N2O, CO, and CO2 in combustion gases using absorption spectroscopy and fast extraction- sampling techniques. Measured survey spectra of the NO 3v band and H2O lines from the v2 + v3 band in the spectral region from 5556 cm-1 to 5572 cm-1 were recorded and compared to calculated spectra to select optimum transitions for NO detection. Similarly, measured survey spectra of the N2O 3v3 band from 6535 cm-1 to 6600 cm-1 were used to identify optimum transitions for N2O detection. High- resolution NO absorption measurements were recorded in a fast-flow multipass cell containing probe-sampled combustion gases to determine NO concentrations in a laminar, premixed CH4/air flame, seeded with NH3. For fuel-lean conditions, the measured No mole fractions corresponded to 68 percent of the injected NH3. For fuel-rich conditions, the fraction of NH3 converted to NO decreased with increasing equivalence ratio. In additional experiments, CO and CO2 absorption measurements were used to determine species concentrations above a laminar, premixed CH4/air flame. Good agrement was found between measured CO and CO2 concentrations and calculated chemical equilibrium values.
KEYWORDS: Temperature metrology, Control systems, Actuators, Semiconductor lasers, Sensors, Absorption, Multiplexing, Process control, Gases, Modulation
A multiplexed diode-laser sensor system, based on absorption spectroscopy techniques and comprised of two InGaAsP diode lasers and fiber-optic components, has been developed to measure temperature and species concentration non- intrusively over a single path for closed-loop process control. The system was applied to measure and control the gas temperature in the post-flame gases 6 mm above the surface of a Hencken burner. The wavelengths of the lasers were independently current-tuned across H2O transitions near 1343 nm and 1392 nm. Temperature was determined from the ratio of measured peak absorbances, and H2O concentration was determined from the measured peak absorbance of one transition set at the measured temperature. A closed-loop feedback system was demonstrated to control the mean temperature and the amplitude of temperature fluctuations at particular frequencies by appropriately modulating the fuel flow rate. The results obtained demonstrate the potential of multiplexed diode lasers for rapid, continuous, in situ measurements and control of gas dynamic parameters in high-temperature combustion flowfields and other environments with difficult optical access.
A multiplexed diode-laser sensor system, comprised of two InGaAsP diode lasers and fiber- optic components, has been developed to non-intrusively measure temperature and species concentration over a single path for closed-loop process control using laser absorption spectroscopy techniques. The system was applied to measure and control the gas temperature in the post-flame gases 6 mm above the surface of a Hencken burner (multiple CH4-air diffusion flames). The wavelengths of the lasers were independently current-tuned across H2O transitions near 1343 nm (v1 + v3 band) and 1392 nm (2v1, v1 + v3 bands), and temperature was determined from the ratio of measured peak absorbances. H2O concentration was determined from the measured peak absorbance of one transition set at the measured temperature. The temperatures recorded using the sensor compared well with those measured by thermocouples. A computer-controlled closed-loop feedback circuit that actuated the fuel flow in response to the difference between the measured and desired gas temperature was used to control the flame temperature in the probed region. The results obtained with this first generation system demonstrate the potential of multiplexed diode lasers for rapid, continuous, in situ measurements and control of gasdynamic parameters in combustion environments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.