Miniaturization of astronomical instruments for high-resolution cross-correlation spectroscopy for exoplanet analysis may be achieved using existing photonic platforms and technologies. Arrays of fibre Bragg gratings (FBGs) may be inscribed into optical fibre to form a target-tailored instrument spectrum offering flexible modulation during instrument operation. This paper presents example spectra of the first such instrument designed for astronomical spectroscopy, fabricated by point-by-point writing with a femtosecond laser in the core of a single-mode telecommunication fibre. First results of spectral modulation and cross-correlation analysis are presented for a strain-modulated FBG array based on infrared molecular gas absorption.
Femtosecond laser light has been shaped with a spatial light modulator (SLM) to generate optically thin, aberration-free sheets of uniform intensity for inscription of fiber Bragg gratings (FBGs) inside the core of SMF-28 telecommunication fiber. The combination of flexible beam shaping and sheet-by-sheet writing offers facile means in controlling the coupling to cladding or radiation modes while facilitating spectral tuning flexibility that is not available with interference-based techniques. Spectral responses of uniform first order FBGs fabricated with single-pulse exposures are presented.
Beam shaping of femtosecond lasers was applied in the Kerr-lensing and aberration regime to enable high-aspect-ratio filament tracks to form uniformly through the silica cladding and core waveguide of single-mode fiber (SMF28/450). One- and two-dimensional filament arrays were embedded along the waveguide to form weak to strong photonic stopbands. The filament shape enhanced transverse light scattering into narrow azimuthal radiation zones. Tailoring of chirp and 2D patterns further facilitated high-resolution (~350 pm) spectral focusing onto a CCD camera, defining a compact “Spectrometer-in-fibre” over the visible spectrum. At higher exposure, the filaments opened into narrow nano-channels (200-400 nm diameter) presenting a novel Bragg grating for refractive index sensing of the ambient environment. This lab-in-fiber technology presents a robust, flexible, and ubiquitous communication platform for nano-scale sensing across expansive networks or into tightly confined, sinuous spaces.
Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction.
This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring.
Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation of low-loss optical waveguides over shallow and deep focusing conditions.
Lastly, SLM beam shaping has been successfully extended to interferometric processing inside thin transparent film, enabling the arbitrary formation of uniform or non-uniform, symmetric or asymmetric patterns of flexible shape on nano-scale dimensions without phase-noise degradation by the SLM patterning. We present quantized structuring of thin films by a single laser pulse, demonstrating λ/2nfilm layer ejection control, blister formation, nano-cavities, and film colouring. Closed intra-film nanochannels with high aspect ratio (20:1) have been formed inside 3.5 um thick silica, opening new prospects for sub-cellular studies and lab-in-film concepts that integrate on CMOS silicon technologies.
In this work longitudinal pumping of a continuous wave (CW) Nd:YVO4 laser by high power VCSEL modules was numerically studied. Two VCSEL pump modules (6 W and 15 W) were compared. The maximum output power from a Nd:YVO4 crystal using these pump modules was calculated to be 2.5 W and 6 W, respectively, using a 10 % output coupler. The slope and optical-to-optical efficiencies in both cases were around 47% and 40%, respectively. The performance of Nd:YVO4 crystal was found to be better than that of Nd:YAG crystal. Our numerical results indicate that VCSELs can serve as efficient pump sources for the end-pumped CW Nd:YVO4 lasers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.