The 4-Metre Multi-Object Spectrograph Telescope (4MOST) is a second-generation instrument build for ESO’s VISTA telescope in Chile, enabling large-scale spectroscopic surveys of the night sky. 4MOST will complement several European space-based observatories and future ground-based survey facilities, furthering our understanding of the universe. The instrument uses over 2 400 science optical fibres to collect and transmit light simultaneously from various astronomical targets to three spectrographs. Two thirds of the fibres will go to low-resolutions spectrographs and the remaining to a high-resolution spectrograph. Each spectrograph has three channels. Each channel uses a charge-coupled device (CCD) 231-C6 from Teledyne e2v, which gives a total of 9 science detectors. The detectors have a resolution of 6k × 6k with a pixel size of 15 μm which accounts for a total image area of 92.2mm × 92.4 mm. The image area has four separately connected sections that allow the read-out to be conducted through four output circuits. The data acquisition and signal processing unit of each detector is a new general detector controller (NGC), which is a versatile platform for infrared and optical detectors developed by ESO that is already employed in several state-of-the-art instruments. During the testing phase of the different spectrographs, flat frames were acquired that showed an unidentified image structure manifesting mostly as diagonal lines across all quadrants with central-to-edge preferential pathways. The observed fingerprint showed a slightly elevated charge amount over a few pixels wide when compared to the rest of the array. Due to the dynamic variation of the affected pixels across successive frames, the feasibility of mitigating the described phenomenon through calibration was impractical. While large format CCDs of this nature find extensive application, and the NGC is a prevalent choice for ESO instrumentation, the observation of this particular artifact appears to be previously undocumented, although it shows some similarities with the tearing patterns observed in other deep-depletion devices which are associated with field distortions in thick silicon. In this work, we describe, evaluate, and present a removal technique for the undefined image structure observed in the science detectors of the 4MOST instrument.
A major limiting factor of using photonic integrated circuits (PICs) in astronomical instruments is that they are functional only in the single-mode regime. As number of modes M in the PSF scales with diameter D of the telescope (D∕4λ2), it is impractical to use PICs based spectrographs without extreme adaptive optics (exAO) in ground- based observatories. To increase the coupling efficiency of the FoV into a PICs based spectrograph, we can employ a lower order adaptive optics (LOAO) to partially correct the PSFs. The partially corrected FoV is then sampled with an integral field unit (IFU) comprising of micro-lens fed MMF/FMFs, which feed into an array of photonic lanterns (PLs). The multiple SMF outputs of the PLs are butt-coupled across a stack of AWGs, one PL connected to the corresponding AWG or connected across the stack. CAWSMOS is first of its kind concept that exploits the ability of AWGs to spectrally disperse light from more than one fibre simultaneously. Each AWG disperses the wavelengths horizontally, and the cross-disperser disperses the orders vertically. The echellogram from each fibre on an AWG is spatially shifted vertically to occupy the space between the orders. Each AWG is assigned to individual real-estate on the detector area.
WST – Widefield Spectroscopic Telescope: We summarise the design challenges of instrumentation for a proposed 12m class Telescope that aims to provide a large (>2.5 square degree) field of view and enable simultaneous Multi-object (> 20,000 objects) and Integral Field spectroscopy (inner 3x3 arcminutes field of view), initially at visible wavelengths. For the MOS mode, instrumentation includes the fiber positioning units, fiber runs and the high (R~40,000) and low (R~3,000 - 4,000) resolution spectrographs. For the MUSE like Integral Field Spectrograph, this includes the relay from the Telescope Focal Plane, the multi-stage splitting and slicing and almost 150 identical spectrographs. We highlight the challenge of mass production at a credible cost and the issues of maintenance and sustainable operation.
Arrayed waveguide gratings (AWG) have gained attention as promising integrated spectrographs for ground-based telescopes, airborne applications, and spaceborne instrumentation due to their low mass, diffraction limit characteristics, thermal stability, and robustness against vibrations and misalignment. The Potsdam Arrayed Waveguide Spectrograph (PAWS) is a cross-dispersive instrument based on an integrated photonic spectrograph (IPS) that is optimized for the astronomical H-Band and was designed and developed by innoFSPEC at the Leibniz Institute for Astrophysics Potsdam (AIP). The main element is a second-generation AWG that is fibre coupled and works as a first dispersive element. To work as an IPS, the dispersed light of the AWG is sampled at the output facet and magnified by a microscope objective. The light is then fed into a free-space optical system housed in a cryostat working at 140 K. An afocal relay re-images the exit pupil of the microscope into the plane of a cross-dispersive element containing a diffractive grating. Subsequently, an objective focuses the resulting echellogram on a Teledyne 2k × 2k H2RG near-infrared array working at 80 K. To validate the functionality of the system, different light sources have been used. A tunable laser source generated an echellogram through frame stacking. Furthermore, the cross-dispersed output of a supercontinuum source and of an in-house developed frequency comb system were recorded under varying input conditions of the AWG, successfully achieving first light laboratory measurements. Throughout multiple cycles and measurements of the instrument, several parameters and characteristics were identified, providing opportunities for optimization to enhance the instrument’s performance and facilitate the miniaturization of future iterations. In this manuscript, we will provide a concise overview of the PAWS instrument, the preliminary results of laboratory measurements, and lessons learned to improve the future iterations of the next generation near-infrared cross-dispersed integrated photonic spectrograph. PAWS represents a pioneering demonstration of an astronomy optimized AWG chip, showcasing the advantageous capabilities of integrated photonic spectrograph.
Photonic Integrated Circuits (PIC) are best known for their important role in the telecommunication sector, e.g. high speed communication devices in data centers. However, PIC also hold the promise for innovation in sectors like life science, medicine, sensing, automotive etc. The past two decades have seen efforts of utilizing PIC to enhance the performance of instrumentation for astronomical telescopes, perhaps the most spectacular example being the integrated optics beam combiner for the interferometer GRAVITY at the ESO Very Large Telescope. This instrument has enabled observations of the supermassive black hole in the center of the Milky Way at unprecedented angular resolution, eventually leading to the Nobel Price for Physics in 2020. Several groups worldwide are actively engaged in the emerging field of astrophotonics research, amongst them the innoFSPEC Center in Potsdam, Germany. We present results for a number of applications developed at innoFSPEC, notably PIC for integrated photonic spectrographs on the basis of arrayed waveguide gratings and the PAWS demonstrator (Potsdam Arrayed Waveguide Spectrograph), PIC-based ring resonators in astronomical frequency combs for precision wavelength calibration, discrete beam combiners (DBC) for large astronomical interferometers, as well as aperiodic fiber Bragg gratings for complex astronomical filters and their possible derivatives in PIC.
BlueMUSE is a novel instrument under development for the ESO VLT, that builds on the legacy of MUSE, however with a blue wavelength range, a larger field-of-view (FoV), and higher spectral resolution. Driven by high-profile and unique science cases, the requirements present new challenges to the development of the instrument, although the fundamental layout will be based on the successful modular structure of the classical MUSE. In order to achieve the expected mean spectral resolution of R=3600 and radial velocity measurement accuracy of better than 1 km/s, as well as spectrophotometric performance, BlueMUSE must be equipped with a calibration unit to perform accurate wavelength, flat-field, and geometrical calibration. Lessons learned from MUSE show that the variation of the line-spread-function (LSF) across the FoV as a consequence of the field-splitter and image slicer layout requires a methodology to accurately measure the LSF as a function of x and y. Moreover, classical spectral line lamps that have been used traditionally for wavelength calibration present the problem of a scarce emission line coverage in the blue. BlueMUSE has entered pre-Phase-A in 2022. We report first results from conceptual design studies to address these challenges, in particular concepts of Fabry-Perot based tunable frequency combs, and as an alternative approach novel concepts with laser frequency combs or micro-ring resonator based combs in the blue.
The Potsdam Arrayed Waveguide Spectrograph (PAWS) is built upon an integrated photonic spectrograph designed for astronomy. Similar to integrated optic beam combiners for interferometry, PAWS is intended to demonstrate on sky how a traditional bulk optics spectrograph with R = 15.000 in the H band can be miniaturized to fit on a chip. The integrated photonic spectrograph is based on second-generation Arrayed Waveguide Gratings (AWG) with unprecedented performance in terms of spectral resolution and throughput. The fibre-coupled AWG serves as a first dispersive element. The pre-dispersed light is fed into a free-space optical system located in a cryostat. Here the overlapping spectral orders are separated by cross-dispersion. The resulting echellogram is recorded by a Teledyne 2kx2k H2RG near-infrared array. Locally controlled constant cryogenic temperatures are required for the operation of the cryostat. This was achieved by fine-tuning and optimizing the original cryostat design using experimental data from multiple cryogenic cycles. These steps included the optimization of thermal interfaces, gold coating of the radiation shield, and an appropriate cooling sequence using the constraints of the allowed cooling rate for H2RG focal plane arrays. Using the readout electronics and GEIRS software provided by the Max Planck Institute for Astronomy (MPIA), frames of the H2RG were obtained, allowing performance calculations and dark pre-characterization of the system. For the optimum alignment of the optical system, the coefficient of thermal expansion (CTE) was measured with an interferometric set-up that recorded the spatial displacements of two reflecting optical elements within the cryostat during a cryogenic cycle. An appropriate strategy was developed to adjust the cryogenic cross dispersion optics inside the vacuum chamber to the AWG coupling optics outside the chamber.
We recently performed tests of the discrete beam combiner (DBC) through an on-sky experiment using a 4-input pupil remappers-based integrated optics device. Here, we report on the lessons learned, as well as visibilities and closure phase results for our stellar target, Vega. Through complementary simulations, we analyze how the residual phase errors, input power imbalance at the waveguides, slow environmental changes, and different photon levels affect the performance of the DBC. This is an important aspect to improve future on-sky calibration strategies for this type of beam combiner, in particular when combining a large number of apertures.
We present the optomechanical design of the Potsdam Arrayed Waveguide Spectrograph (PAWS), which is the first on-sky demonstrator of an integrated photonic spectrograph specifically designed and optimized for astronomy. The instrument is based on an arrayed waveguide grating (AWG) that was designed by and custom fabricated for the innovation center innoFSPEC Potsdam. The commissioning of the instrument is planned at the Calar Alto 2:2m Telescope in southern Spain. The core of the instrument is the AWG-chip as the primary dispersive element. The AWG device is coupled to the telescope module via a single-mode fibre (SMF). The spectral image on the output facet of the AWG is a superposition of multiple spectral orders due to the cyclic dispersive behavior of the waveguide array. The output of the AWG is fed into a free-space optical system housed inside a cryostat via an infinity-corrected microscope objective. The overlapping spectral orders are separated by a second dispersion stage using a ruled grating as a cross-dispersive element, and the resulting echellogram is projected onto a Teledyne 2k x 2k H2RG near-infrared array. The requirement of sub-micron accuracy of the fibre-chip alignment has led to an advanced photonic packaging method. In order to avoid on-site alignment procedures during the on-sky testing, the AWG mount, fibre-support, and microscope objective were integrated into a single monolithic module. Optical and thermal simulations and the design of the cryostat were realized by Andes Scientific. The read-out electronics and the compatible operating software for the detector was provided by the Max Planck Institute for Astronomy (MPIA). Data analysis is performed using the open-source data reduction software P3D, which provides functionality for the removal of the instrument signature, extraction of the spectra, correction for the blaze function, wavelength calibration, and processed data file export.
The problem of atmospheric emission from OH molecules is a long standing problem for near-infrared astronomy. We are now close to solving this problem for the first time with the PRAXIS instrument. PRAXIS is a unique spectrograph which is fed by fibres that remove the OH background, and is optimised specifically to benefit from OH-Suppression. The OH suppression is achieved with fibre Bragg gratings, which were tested successfully on the GNOSIS instrument. The OH lines are suppressed by a factor of ~1000, leading to a reduction of the integrated background of a factor ≈9. A future upgrade to multicore fibre Bragg gratings will further increase this reduction. PRAXIS has had two commissioning runs, with a third commissioning run planned for July 2019, which will be presented at the conference. PRAXIS has a measured throughput of ≈20 %, demonstrating high efficiency in an OH suppression instrument for the first time. Science verification observations of Seyfert galaxies demonstrate the potential of OH suppression.
Fibre fed spectroscopy requires that the output distribution of the optical fibre is as stable as possible. Effects like scrambling and FRD play an important role in any fibre fed instrument design, since they affect directly the output distribution of multi-mode fibres. These effects depend, among other factors, on the excited propagation modes. The propagation modes of different fibre geometries have different spatial distributions, therefore could show different scrambling and FRD characteristics. A model is being developed at the Leibniz-Institute for Astrophysics Potsdam (AIP) that shows the intrinsic effect of scrambling and FRD in optical fibres. The model is based on the Eigenmode Expansion Method (EEM). With this theoretical frame work should be possible to compare the results of mode excitation in different fibre geometries. This work is part of a PhD Thesis involved in the fibre system of MOSAIC, a multi-object spectrograph for the E-ELT.
The problem of atmospheric emission from OH molecules is a long standing problem for near-infrared astronomy. PRAXIS is a unique spectrograph which is fed by fibres that remove the OH background and is optimised specifically to benefit from OH-Suppression. The OH suppression is achieved with fibre Bragg gratings, which were tested successfully on the GNOSIS instrument. PRAXIS uses the same fibre Bragg gratings as GNOSIS in its first implementation, and will exploit new, cheaper and more efficient, multicore fibre Bragg gratings in the second implementation. The OH lines are suppressed by a factor of ∼ 1000, and the expected increase in the
signal-to-noise in the interline regions compared to GNOSIS is a factor of ∼ 9 with the GNOSIS gratings and a
factor of ∼ 17 with the new gratings.
PRAXIS will enable the full exploitation of OH suppression for the first time, which was not achieved by GNOSIS (a retrofit to an existing instrument that was not OH-Suppression optimised) due to high thermal emission, low spectrograph transmission and detector noise. PRAXIS has extremely low thermal emission, through the cooling of all significantly emitting parts, including the fore-optics, the fibre Bragg gratings, a long length of fibre, and the fibre slit, and an optical design that minimises leaks of thermal emission from outside the spectrograph. PRAXIS has low detector noise through the use of a Hawaii-2RG detector, and a high throughput through a efficient VPH based spectrograph. PRAXIS will determine the absolute level of the interline continuum and enable observations of individual objects via an IFU. In this paper we give a status update and report on acceptance tests.
Atmospheric emission from OH molecules is a long standing problem for near-infrared astronomy. PRAXIS is a unique spectrograph, currently in the build-phase, which is fed by a fibre array that removes the OH background. The OH suppression is achieved with fibre Bragg gratings, which were tested successfully on the GNOSIS instrument. PRAXIS will use the same fibre Bragg gratings as GNOSIS in the first implementation, and new, less expensive and more efficient, multicore fibre Bragg gratings in the second implementation. The OH lines are suppressed by a factor of ~1000, and the expected increase in the signal-to-noise in the interline regions compared to GNOSIS is a factor of ~ 9 with the GNOSIS gratings and a factor of ~ 17 with the new gratings. PRAXIS will enable the full exploitation of OH suppression for the first time, which was not achieved by GNOSIS due to high thermal emission, low spectrograph transmission, and detector noise. PRAXIS will have extremely low thermal emission, through the cooling of all significantly emitting parts, including the fore-optics, the fibre Bragg gratings, a long length of fibre, and a fibre slit, and an optical design that minimises leaks of thermal emission from outside the spectrograph. PRAXIS will achieve low detector noise through the use of a Hawaii-2RG detector, and a high throughput through an efficient VPH based spectrograph. The scientific aims of the instrument are to determine the absolute level of the interline continuum and to enable observations of individual objects via an IFU. PRAXIS will first be installed on the AAT, then later on an 8m class telescope.
The accurate characterization of the field at the output of the optical fibres is of relevance for precision spectroscopy in astronomy. The modal effects of the fibre translate to the illumination of the pupil in the spectrograph and impact on the resulting point spread function (PSF). A Model is presented that is based on the Eigenmode Expansion Method (EEM) that calculates the output field from a given fibre for different manipulations of the input field. The fibre design and modes calculation are done via the commercially available Rsoft-FemSIM software. We developed a Python script to apply the EEM. Results are shown for different configuration parameters, such as spatial and angular displacements of the input field, spot size and propagation length variations, different transverse fibre geometries and different wavelengths. This work is part of the phase A study of the fibre system for MOSAIC, a proposed multi-object spectrograph for the European Extremely Large Telescope (ELT-MOS).
We here report on recent progress on astronomical optical frequency comb generation at innoFSPEC-Potsdam and
present preliminary test results using the fiber-fed Multi Unit Spectroscopic Explorer (MUSE) spectrograph. The
frequency comb is generated by propagating two free-running lasers at 1554.3 and 1558.9 nm through two dispersionoptimized
nonlinear fibers. The generated comb is centered at 1590 nm and comprises more than one hundred lines with
an optical-signal-to-noise ratio larger than 30 dB. A nonlinear crystal is used to frequency double the whole comb
spectrum, which is efficiently converted into the 800 nm spectral band. We evaluate first the wavelength stability using
an optical spectrum analyzer with 0.02 nm resolution and wavelength grid of 0.01 nm. After confirming the stability
within 0.01 nm, we compare the spectra of the astro-comb and the Ne and Hg calibration lamps: the astro-comb exhibits
a much larger number of lines than lamp calibration sources. A series of preliminary tests using a fiber-fed MUSE
spectrograph are subsequently carried out with the main goal of assessing the equidistancy of the comb lines. Using a
P3d data reduction software we determine the centroid and the width of each comb line (for each of the 400 fibers
feeding the spectrograph): equidistancy is confirmed with an absolute accuracy of 0.4 pm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.