The ExoMars 2020 Rover is a life detection mission, and is classified as Planetary Protection (PP) Mission Category IVb, the first IVb mission since the Viking missions. Mars Organic Molecule Analyzer – Mass Spectrometer (MOMA-MS) is a life detection instrument for the rover. To meet the stringent bioburden requirement of 0.03 spore/m2, the MS is subjected to Dry Heat Microbial Reduction (DHMR) to decrease the bioburden from a measured 88 spores/m2 to 0.009 spores/m2. After DHMR, exposure of the sample path must be kept to an absolute minimum and requires aseptic operations. Aseptic operations include determining the safe exposure time based on the surface area of exposure and particle fallout expected in the aseptic ISO class 5 workspace, preparing an aseptic ISO class 5 workspace, and using sterile garments and tools. During the exposure activity the environment is monitored with active and passive fallout for bioburden and real time airborne particle counts. Sterile tools are handled by a two person team so the operator touches only the tool and not the exterior surfaces of the sterilization pouch, and a sterile operating field is established as a safe place to organize tools or parts during the aseptic operations. In cases where aseptic operations are not feasible, localized DHMR is used after exposure. Any breach in the PP cleanliness can necessitate repeating instrument level DHMR, which not only has significant cost and schedule implications, but also is a risk to hardware that is not rated for repeated long exposures to high temperatures.
Mars Organic Molecule Analyzer (MOMA) is an instrument suite on the European Space Agency (ESA) ExoMars 2020 Rover, and the Mass Spectrometer (MOMA-MS) is being built at Goddard Space Flight Center (GSFC). MOMA-MS is a life-detection instrument and thus falls in the most stringent category of Planetary Protection (PP) biological cleanliness requirements. Less than 0.03 spore/m2 are allowed in the instrument sample path. In order to meet these PP requirements, MOMA-MS must be built and maintained in a low bioburden environment. The MOMA-MS project at GSFC maintains three clean rooms with varying levels of bioburden control. The Aseptic Assembly Clean room has the highest level of control, applying three different bioburden reducing methods: 70% Isopropyl Alcohol (IPA), 7.5% Hydrogen Peroxide, and Ultra-Violet C (UVC) light. The three methods are used in rotation and each kills microorganisms by a different mechanism, reducing the likelihood of microorganisms developing resistance to all three. The Integration and Mars Chamber Clean rooms use less biocidal cleaning, with the option to deploy extra techniques as necessary. To support the monitoring of clean rooms and verification that MOMA-MS hardware meets PP requirements, a new Planetary Protection lab was established that currently has the capabilities of standard growth assays for spore or vegetative bacteria, rapid bioburden analysis that detects Adenosine Triphosphate (ATP), plus autoclave and Dry Heat microbial Reduction (DHMR) verification. The clean rooms are monitored for vegetative microorganisms and by rapid ATP assay, and a clear difference in bioburden is observed between the aseptic and other clean room.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.