Optical component differentiation (diffusers and light processing elements) between reflective displays based on
Interferometric Modulation (IMOD) and typical transmissive (LCD) displays is discussed. We characterize optimized
diffusers for a front light of reflective displays and present the key differentiation data with important metrology tools to
monitor the image quality. Drawing on our experience, we outline guidance going forward.
In this paper, integrated lighting is discussed, including light sources, rough or relief surfaces such as diffusers and microprisms, as well as theoretical limits of ray tracing and photometry, and performance metrics of integrated lighting systems.
We study the interplay between parametric and Raman gain in photonic crystal fibers by taking into account the vector nature of the electric field, the fiber frequency dependent birefringence, the Kerr nonlinear coefficient, the Raman gain profile and chromatic dispersion. In particular, we show that an accurate representation of the frequency dependence of the nonlinear and dispersive properties of a photonic crystal fiber is essential for correctly describing the overall gain profile for a probe signal at large frequency detuning from a continuous wave or pulsed pump. For example, we found that fourth and higher order dispersion have a striking influence on the spectrum of modulation polarization instability gain in both the high and low birefringence regime, in that the vector parametric gain is suppressed above a critical level of linear birefringence. We validated the theory by experimental observations of vector parametric amplification in high birefringence holey fiber with triple defects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.