Molecular ultrasound imaging is used to image the expression of specific proteins on the surface of blood vessels using the conjugated microbubbles (MBs) that can bind to the targeted proteins, which makes MBs ideal for imaging the protein expressed on blood vessels. However, how to optimally apply MBs in an ultrasound imaging system to detect and quantify the targeted protein expression needs further investigation. To address this issue, objective of this study is to investigate feasibility of developing and applying a new quantitative imaging marker to quantify the expression of protein markers on the surface of cancer cells. To obtain a numeric value proportional to the amount of MBs that bind to the target protein, a standard method for quantification of MBs is applying a destructive pulse, which bursts most of the bubbles in the region of interest. The difference between the signal intensity before and after destruction is used to measure the differential targeted enhancement (dTE). In addition, a dynamic kinetic model is applied to fit the timeintensity curves and a structural similarity model with three metrics is used to detect the differences between images. Study results show that the elevated dTE signals in images acquired from the targeted (MBTar) and isotype (MBIso) are significantly different (p<0.05). Quantitative image features are also successfully computed from the kinetic model and structural similarity model, which provide potential to identify new quantitative image markers that can more accurately differentiate the targeted microbubble status.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.