This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The required alignment accuracy of the lens triplet and of the singlet relative to the triplet is very demanding and needs to be achieved and verified at the operational temperature of 134K. As an introduction the design, the integration and alignment concept are briefly summarized, as well as the measurement concept to verify the cold alignment within the cryostat. Alignment results for the integration of CaLA EQM and FM at room temperature are presented, the alignment stability after vibrational loads and thermal vacuum cycling is high, only minor changes of a few μm and arcsecs can be detected. The accuracy of the measured cryogenic alignment is demonstrated to be just a few μm and arcsec off the ideal predicted opto-mechanical alignment.
The technical maturity of the combination of single features such as CaF2, large diameter (and mass), high precision and cryogenic conditions is considered as low. Therefore, a dedicated pre-development program has been launched to design and develop a first prototype of lens holder and to demonstrate the functional performance at representative operational conditions.
The 4 lenses are divided into 3x lenses for the Camera Lens Assembly (CaLA) and 1x lens for the Corrector Lens Assembly (CoLA). Each lens is glue mounted onto solid state springs, part of an adaption ring. The adaption ring shall provide protection against vibration loads, high accuracy positioning, as well as quasi load free mounting of the lens under operational conditions. To reduce thermomechanical loads on the lens, the CTE of the adaption ring is adapted to that of the lens. The glue between lens and solid state spring has to withstand high tension loads during vibration. At the operational temperature the deviating CTE between glue and lens/adaption ring introduces shear loads into the glue interface, which are critical, in particular for the fragile CaF2 lens material. For the case of NISP the shear loads are controlled with the glue pad diameter and the glue thickness.
In the context of the development activity many technology aspects such as various solid state spring designs, glue selection and glue handling have been investigated. A parametric structural model was developed to derive the specific design feature of each ring, such as spring force, number of springs, eigenfrequency, etc.
This paper presents the design of the adaption ring in conjunction with test results from functional verification. These results are presented on behalf of the EUCLID consortium.
The selection of the suitable glue and required bonding parameters, design and qualification of the gluing interface, development and verification of the gluing process was a great challenge because of the low TRL and heritage of the bonding technology. The different material combinations (CaF2 to SS316L, LF5G15 and S-FTM16 to Titanium, SUPRASIL3001 to Invar M93), large diameter (168mm) and thin edge of the lenses, cryogenic nonoperational temperature (100K) and high performance accuracy of the lenses were the main design driver of the development. The different coefficients of thermal expansion (CTE) between lens and lens holder produce large local mechanical stress. As hygroscopic crystal calcium fluoride (CaF2) is very sensitive to moisture therefore an additional surface treatment of the gluing area is necessary.
Extensive tests e.g glue handling and single lap shear tests are performed to select the suitable adhesive. Interface connection tests are performed to verify the feasibility of selected design (double pad design), injection channel, the roughness and treatment of the metal and lens interfaces, glue thickness, glue pad diameter and the gluing process. CTE and dynamic measurements of the glue, thermal cycling, damp- heat, connection shear and tension tests with all material combinations at RT and 100K are carried out to qualify the gluing interface. The gluing interface of the glued lenses in their mounts is also qualified with thermal cycling, 3D coordinate measurements before and after environmental tests, Polarimetry and vibration test of the lens assemblies.
A multi-function double pad gluing tool and lens mounting tool is designed, manufactured and verified to meet the lens positioning and alignment performance of the lens in the holder which provides the possibility to glue lenses, filters, mirrors with different diameters, shapes and thickness with ±10μm accuracy in plane, out of plane and ±10 arcsec in tip/tilt with respect to the lens holder interface. The paper presents the glue interface qualification results, the qualification/verification methods, the developed ground support equipment and the gluing process of the EUCLID high precision large cryogenic lens mounts. Test results achieved in the test campaign demonstrate the suitability of the selected adhesive, glue pad design, interface parameters and the processes for the precise gluing of the lenses in lens holders for all lenses. The qualification models of the NIOA are successfully glued and qualified. The developed process can also be used for other glass materials e.g. MaF2 and optical black coated metallic surfaces.
In this paper, we compare two complementary approaches to determine the imaging quality of the photometer. The first approach is based on a direct camera measurement of the point-spread function (PSF) while the second approach uses a Shack-Hartmann sensor to reconstruct the wave front of the system.
Both methods yield in principle largely overlapping information in terms of e.g. modulation transfer function (MTF), encircled energy (EE) or spot shape. However, the experimental requirements are quite different. Details like the spatial extent and coherence properties of the object have different impact and are essential for the degree of agreement between both approaches. Moreover, the disturbance due to measurement noise is quite unequal and requires different evaluation steps.
The pros and cons of both methods that actually complement one another are investigated and discussed.
One of the key features of the upgraded spectrograph is the new calibration system, which uses a laser frequency comb as reference light source. Another aspect is the possibility to perform simultaneous wavelength calibration, while recording science data. For this purpose a new 4-fiber slit has been developed, which opens up the possibility to feed light from different sources at the same time through the entrance slit of the spectrograph. We present a detailed characterization of this new device, based on the results of extensive lab tests performed at the Munich University Observatory.
View contact details
No SPIE Account? Create one