Weak gravitational lensing is a very promising probe for cosmology that relies on highly precise shape measurements. Several new instruments are being deployed and will allow for weak lensing studies on unprecedented scales, and at new frequencies. In particular, some of these new instruments should allow for the blooming of radio-weak lensing, specially the SKA with many Petabits per second of raw data.1 Hence, great challenges will be waiting at the turn. In addition, processing methods should be able to extract the highest precision possible and ideally, be applicable to radio-astronomy. For the moment, the two methods that already exist do not satisfy both conditions. In this paper, we present a new plug-and-play solution where we add a shape constraint to deconvolution algorithms and results show measurements improvement of at least 20%.
Optimal Transport theory enables the definition of a distance across the set of measures on any given space. This Wasserstein distance naturally accounts for geometric warping between measures (including, but not exclusive to, images). We introduce a new, Optimal Transport-based representation learning method in close analogy with the usual Dictionary Learning problem. This approach typically relies on a matrix dot-product between the learned dictionary and the codes making up the new representation. The relationship between atoms and data is thus ultimately linear. By reconstructing our data as Wasserstein barycenters of learned atoms instead, our approach yields a representation making full use of the Wasserstein distance's attractive properties and allowing for non-linear relationships between the dictionary atoms and the datapoints.
We apply our method to a dataset of Euclid-like simulated PSFs (Point Spread Function). ESA's Euclid mission will cover a large area of the sky in order to accurately measure the shape of billions of galaxies. PSF estimation and correction is one of the main sources of systematic errors on those galaxy shape measurements. PSF variations across the field of view and with the incoming light's wavelength can be highly non-linear, while still retaining strong geometrical information, making the use of Optimal Transport distances an attractive prospect. We show that our representation does indeed succeed at capturing the PSF's variations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.