KEYWORDS: Digital breast tomosynthesis, Breast, Signal to noise ratio, Mammography, Performance modeling, 3D image processing, Reconstruction algorithms, Visualization, Sensors, 3D modeling
Digital breast tomosynthesis (DBT) acquires a series of projection images from different angles as an x-ray source rotates around the breast. Such imaging geometry lends DBT naturally to stereoscopic viewing as two projection images with a reasonable separation angle can easily form a stereo pair. This simulation study assessed the efficacy of stereo viewing of DBT projection images. Three-dimensional computational breast phantoms with realistically shaped synthetic lesions were scanned by three simulated DBT systems. The projection images were combined into a sequence of stereo pairs and presented to a stereomatching-based model observer for deciding lesion presence. Signal-to-noise ratio was estimated, and the detection performance with stack viewing of reconstructed slices was the benchmark. We have shown that: (1) stereo viewing of projection images may underperform stack viewing of reconstructed slices for current DBT geometries; (2) DBT geometries may impact the efficacy of the two viewing modes differently: narrow-arc and wide-arc geometries may be better for stereo viewing and stack viewing, respectively; (3) the efficacy of stereo viewing may be more robust than stack viewing to reductions in dose. While in principle stereo viewing is potentially effective for visualizing DBT data, effective stereo viewing may require specifically optimized DBT image acquisition.
Computational modeling of visual attention is an active area of research. These models have been successfully employed in applications such as robotics. However, most computational models of visual attention are developed in the context of natural scenes, and their role with medical images is not well investigated. As radiologists interpret a large number of clinical images in a limited time, an efficient strategy to deploy their visual attention is necessary. Visual saliency maps, highlighting image regions that differ dramatically from their surroundings, are expected to be predictive of where radiologists fixate their gaze. We compared 16 state-of-art saliency models over three medical imaging modalities. The estimated saliency maps were evaluated against radiologists’ eye movements. The results show that the models achieved competitive accuracy using three metrics, but the rank order of the models varied significantly across the three modalities. Moreover, the model ranks on the medical images were all considerably different from the model ranks on the benchmark MIT300 dataset of natural images. Thus, modality-specific tuning of saliency models is necessary to make them valuable for applications in fields such as medical image compression and radiology education.
KEYWORDS: Digital breast tomosynthesis, Breast, 3D modeling, Breast cancer, Signal detection, X-rays, Image quality, Signal to noise ratio, 3D image processing, Lab on a chip, Tumors, Magnetic resonance imaging
Multifocal and multicentric breast cancer (MFMC), i.e., the presence of two or more tumor foci within the same breast, has an immense clinical impact on treatment planning and survival outcomes. Detecting multiple breast tumors is challenging as MFMC breast cancer is relatively uncommon, and human observers do not know the number or locations of tumors a priori. Digital breast tomosynthesis (DBT), in which an x-ray beam sweeps over a limited angular range across the breast, has the potential to improve the detection of multiple tumors.1, 2 However, prior efforts to optimize DBT image quality only considered unifocal breast cancers (e.g.,3-9), so the recommended geometries may not necessarily yield images that are informative for the task of detecting MFMC. Hence, the goal of this study is to employ a 3D multi-lesion (ml) channelized-Hotelling observer (CHO) to identify optimal DBT acquisition geometries for MFMC. Digital breast phantoms and simulated DBT scanners of different geometries (e.g., wide or narrow arc scans, different number of projections in each scan) were used to generate image data for the simulation study. Multiple 3D synthetic lesions were inserted into different breast regions to simulate MF cases and MC cases. 3D partial least squares (PLS) channels, and 3D Laguerre-Gauss (LG) channels were estimated to capture discriminant information and correlations among signals in locally varying anatomical backgrounds, enabling the model observer to make both image-level and location-specific detection decisions. The 3D ml-CHO with PLS channels outperformed that with LG channels in this study. The simulated MC cases and MC cases were not equally difficult for the ml-CHO to detect across the different simulated DBT geometries considered in this analysis. Also, the results suggest that the optimal design of DBT may vary as the task of clinical interest changes, e.g., a geometry that is better for finding at least one lesion may be worse for counting the number of lesions.
KEYWORDS: Digital breast tomosynthesis, Breast, Signal to noise ratio, 3D image processing, 3D modeling, Computer simulations, 3D vision, Breast imaging, Digital imaging, Computing systems, Performance modeling, Signal detection, Sensors, Data modeling
Stereoscopic views of 3D breast imaging data may better reveal the 3D structures of breasts, and potentially improve the detection of breast lesions. The imaging geometry of digital breast tomosynthesis (DBT) lends itself naturally to stereo viewing because a stereo pair can be easily formed by two projection images with a reasonable separation angle for perceiving depth. This simulation study attempts to mimic breast lesion detection on stereo viewing of a sequence of stereo pairs of DBT projection images. 3D anthropomorphic computational breast phantoms were scanned by a simulated DBT system, and spherical signals were inserted into different breast regions to imitate the presence of breast lesions. The regions of interest (ROI) had different local anatomical structures and consequently different background statistics. The projection images were combined into a sequence of stereo pairs, and then presented to a stereo matching model observer for determining lesion presence. The signal-to-noise ratio (SNR) was used as the figure of merit in evaluation, and the SNR from the stack of reconstructed slices was considered as the benchmark. We have shown that: 1) incorporating local anatomical backgrounds may improve lesion detectability relative to ignoring location-dependent image characteristics. The SNR was lower for the ROIs with the higher local power-law-noise coefficient β. 2) Lesion detectability may be inferior on stereo viewing of projection images relative to conventional viewing of reconstructed slices, but further studies are needed to confirm this observation.
KEYWORDS: Tumor growth modeling, Performance modeling, Image analysis, Medical imaging, Image quality, Lab on a chip, Signal to noise ratio, Mammography, Neptunium
As psychophysical studies are resource-intensive to conduct, model observers are commonly used to assess and optimize medical imaging quality. Existing model observers were typically designed to detect at most one signal. However, in clinical practice, there may be multiple abnormalities in a single image set (e.g., multifocal and multicentric breast cancers (MMBC)), which can impact treatment planning. Prevalence of signals can be different across anatomical regions, and human observers do not know the number or location of signals a priori. As new imaging techniques have the potential to improve multiple-signal detection (e.g., digital breast tomosynthesis may be more effective for diagnosis of MMBC than planar mammography), image quality assessment approaches addressing such tasks are needed. In this study, we present a model-observer mechanism to detect multiple signals in the same image dataset. To handle the high dimensionality of images, a novel implementation of partial least squares (PLS) was developed to estimate different sets of efficient channels directly from the images. Without any prior knowledge of the background or the signals, the PLS channels capture interactions between signals and the background which provide discriminant image information. Corresponding linear decision templates are employed to generate both image-level and location-specific scores on the presence of signals. Our preliminary results show that the model observer using PLS channels, compared to our first attempts with Laguerre-Gauss channels, can achieve high performance with a reasonably small number of channels, and the optimal design of the model observer may vary as the tasks of clinical interest change.
When searching through volumetric images [e.g., computed tomography (CT)], radiologists appear to use two different search strategies: “drilling” (restrict eye movements to a small region of the image while quickly scrolling through slices), or “scanning” (search over large areas at a given depth before moving on to the next slice). To computationally identify the type of image information that is used in these two strategies, 23 naïve observers were instructed with either “drilling” or “scanning” when searching for target T’s in 20 volumes of faux lung CTs. We computed saliency maps using both classical two-dimensional (2-D) saliency, and a three-dimensional (3-D) dynamic saliency that captures the characteristics of scrolling through slices. Comparing observers’ gaze distributions with the saliency maps showed that search strategy alters the type of saliency that attracts fixations. Drillers’ fixations aligned better with dynamic saliency and scanners with 2-D saliency. The computed saliency was greater for detected targets than for missed targets. Similar results were observed in data from 19 radiologists who searched five stacks of clinical chest CTs for lung nodules. Dynamic saliency may be superior to the 2-D saliency for detecting targets embedded in volumetric images, and thus “drilling” may be more efficient than “scanning.”
KEYWORDS: Medical imaging, Statistical analysis, Computer simulations, Performance modeling, Data modeling, Signal detection, Image quality, Neodymium, Chemical elements, Copper
It is resource-intensive to conduct human studies for task-based assessment of medical image quality and system optimization. Thus, numerical model observers have been developed as a surrogate for human observers. The Hotelling observer (HO) is the optimal linear observer for signal-detection tasks, but the high dimensionality of imaging data results in a heavy computational burden. Channelization is often used to approximate the HO through a dimensionality reduction step, but how to produce channelized images without losing significant image information remains a key challenge. Kernel local Fisher discriminant analysis (KLFDA) uses kernel techniques to perform supervised dimensionality reduction, which finds an embedding transformation that maximizes betweenclass separability and preserves within-class local structure in the low-dimensional manifold. It is powerful for classification tasks, especially when the distribution of a class is multimodal. Such multimodality could be observed in many practical clinical tasks. For example, primary and metastatic lesions may both appear in medical imaging studies, but the distributions of their typical characteristics (e.g., size) may be very different. In this study, we propose to use KLFDA as a novel channelization method. The dimension of the embedded manifold (i.e., the result of KLFDA) is a counterpart to the number of channels in the state-of-art linear channelization. We present a simulation study to demonstrate the potential usefulness of KLFDA for building the channelized HOs (CHOs) and generating reliable decision statistics for clinical tasks. We show that the performance of the CHO with KLFDA channels is comparable to that of the benchmark CHOs.
KEYWORDS: 3D modeling, Breast, Data modeling, 3D image processing, Visual process modeling, Medical imaging, 3D vision, Performance modeling, Tissues, Computer simulations
Stereoscopic viewing of 3D medical imaging data has the potential to increase the detection of abnormalities. We present a new stereo model observer inspired by the characteristics of stereopsis in human vision. Given a stereo pair of images of an object (i.e., left and right images separated by a small displacement), the model observer rst nds the corresponding points between the two views, and then fuses them together to create a 2D cyclopean view. Assuming that the cyclopean view has extracted most of the 3D information presented in the stereo pair, a channelized Hotelling observer (CHO) can be utilized to make decisions. We conduct a simulation study that attempts to mimic the detection of breast lesions on stereoscopic viewing of breast tomosynthesis projection images. We render voxel datasets that contain random 3D power-law noise to model normal breast tissues with various breast densities. 3D Gaussian signal is added to some of the datasets to model the presence of a breast lesion. By changing the separation angle between the two views, multiple stereo pairs of projection images are generated for each voxel dataset. The performance of the model is evaluated in terms of the accuracy of binary decisions on the presence of the simulated lesions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.