The KM3NeT infrastructure consists of two deep-sea neutrino telescopes being deployed in the Mediterranean Sea. The telescopes will detect extraterrestrial and atmospheric neutrinos by means of the incident photons induced by the passage of relativistic charged particles through the seawater as a consequence of a neutrino interaction. The telescopes are configured in a three-dimensional grid of digital optical modules, each hosting 31 photomultipliers. The photomultiplier signals produced by the incident Cherenkov photons are converted into digital information consisting of the integrated pulse duration and the time at which it surpasses a chosen threshold. The digitization is done by means of time to digital converters (TDCs) embedded in the field programmable gate array of the central logic board. Subsequently, a state machine formats the acquired data for its transmission to shore. We present the architecture and performance of the front-end firmware consisting of the TDCs and the state machine.
With the observation of the gravitational wave event of August 17th 2017 the multi-messenger astronomy era has definitely begun. With the opening of this new panorama, it is necessary to have new instruments and a perfect coordination of the existing observatories. Crystal Eye is a detector aimed at the exploration of the electromagnetic counterpart of the gravitational waves. Such events generated by neutron stars’ mergers are associated with gamma-ray bursts (GRB). At present, there are few instruments in orbit able to detect photons in the energy range going from tens of keV to few MeV. These instruments belong to two different old observation concepts: the all sky monitors (ASM) and the telescopes. The detector we propose is a crossover technology, the Crystal Eye: a wide field of view observatory in the energy range from 10 keV to 10 MeV with a pixelated structure. A pathfinder will be launched with Space RIDER in 2022. We here present the preliminary results of the characterization of the first pixel.
The KM3NeT research infrastructure being built at the bottom of the Mediterranean Sea will host water-Cherenkov telescopes for the detection of cosmic neutrinos. The neutrino telescopes will consist of large volume three-dimensional grids of optical modules to detect the Cherenkov light from charged particles produced by neutrino-induced interactions. Each optical module houses 31 3-in. photomultiplier tubes, instrumentation for calibration of the photomultiplier signal and positioning of the optical module, and all associated electronics boards. By design, the total electrical power consumption of an optical module has been capped at seven Watts. We present an overview of the front-end and readout electronics system inside the optical module, which has been designed for a 1-ns synchronization between the clocks of all optical modules in the grid during a life time of at least 20 years.
Photon detection is a key factor to study many physical processes in several areas of fundamental physics research as well as industrial application (i.e. medical equipment, environmental measurement equipment, quantum computing and oil well logging). Focusing the attention on photodetectors for particle astrophysics, we understand that we are very close to new discoveries and new results. In order to push the progress in the study of very high-energy or extremely rare phenomena (e.g. dark matter, proton decay, neutrinos from astrophysical sources) the current and future experiments require additional improvements in linearity, gain, quantum efficiency and single photon counting capability. To meet the requirements of these classes of experiments, we propose a new design for a modern hybrid photodetector: the VSiPMT (Vacuum Silicon PhotoMultiplier Tube). The idea is to replace the classical dynode chain of a PMT with a SiPM, which therefore acts as a single stage Geiger electron detector and amplifier, without statistical fluctuations. The aim is to match the large sensitive area of a photocathode with the performances of the SiPM technology. The previous VSiPMT prototypes already showed many attractive features such as low power consumption, very large dynamic range, excellent photon counting capability and low voltage driven gain. We now present the results of the full characterization of the latest and largest version achieved up to now, a 2-inches VSiPMT manufactured by Hamamatsu.
With the observation of the gravitational wave event of August 17th 2017 and then with those of the extragalactic neutrino of September 22nd, the multi messenger astronomy era has definitely begun. With the opening of this new panorama, it is necessary to have a perfect coordination of the several observatories. Crystal Eye is an experiment aimed at the exploration of the electromagnetic counterpart of the gravitational wave events, that represent the missing observational link between short Υ-ray bursts and gravitational waves from neutron star mergers. The experiment we propose is a wide field of view observatory. The Crystal Eye objectives will be: to alert the community about events containing soft X-ray and low energy Υ-ray, to monitor long-term variabilities of X-ray sources, to stimulate multi-wavelength observations of variable objects, and to observe diffuse cosmic soft X-ray emissions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.