The European Space Agency (ESA) is developing the Athena (Advanced Telescope for High ENergy Astrophysics) X-ray telescope, an L-class mission in their current Cosmic Vision cycle for long-term planning of space science missions. Silicon Pore Optics (SPO) are a new type of X-ray optics enabling future X-ray observatories such as Athena and are being developed at cosine with ESA as well as academic and industrial partners. These high-performance, modular, lightweight yet stiff, high-resolution X-ray optics shall allow missions to reach unprecedented combination of large effective area, good angular resolution and low mass. As the development of the Athena mission progresses, it is necessary to validate the SPO technology under launch conditions. To this end, ruggedisation and environmental testing studies are being conducted to ensure mechanical stability and optical performance of the optics before, during and after launch. In this paper, we report on the results of our completed environmental testing campaigns on mirror modules of middle radius (about 700 mm) of curvature. In these campaigns, each mirror module is first integrated then submitted to sine and random vibration tests, as well as shock tests, all in accordance with the upcoming Ariane launch vehicle and the mission requirements. Additionally, the mirror modules are characterized with X-ray before and after each test to verify the optical performance remains unchanged.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.