We review the signal-to-noise properties of two setups for Correlation Plenoptic Imaging (CPI), a novel technique that exploits the correlations of light intensity to perform the typical tasks of plenoptic imaging: refocusing out-of- focus parts of the scene, extending the depth of field, reconstruct 3D objects, As opposed to first-order plenoptic imaging, based on direct intensity measurement, CPI does not entail a loss of spatial resolution. Both setups are based on the properties of chaotic light and employ the concept of ghost imaging in different ways: the first one to image the object, the second one to image the focusing element. We show that the SNR can be easier to control in the second CPI scheme, in which the object is focused by a lens.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.