The PRime-focus Infrared Microlensing Experiments (PRIME) camera is part of the joint NASA-JAXA project supporting the Nancy Grace Roman Space Telescope engineering and science studies. It is installed on the 1.8m PRIME telescope with a ≈1.5 square degree FOV dedicated to the project. The instrument is equipped with multiple broad band and narrow band filters between 0.9μm to 1.8μm. The instrument is installed at the South African Astronomical Observatory and has been in continuous operation since October 2022. PRIME is currently surveying the Galactic bulge for microlensing events, GW and GRB studies and other science objectives, in advance of the Roman Space Telescope (RST) mission. After 1.5 years of on-sky operation, we present the use, performance and lessons learned operating RST’s yield demonstration lot H4RG-10 detectors as part of the PRIME camera based on the data processing and analysis tools that we have developed. With the large field of view in the near infrared bands this instrument is a powerful tool in the Southern hemisphere and a compliment to the instruments in the North and in the visible.
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation over cosmological time scales using intensity mapping in the 420 – 540 GHz frequency range. EXCLAIM uses a fully cryogenic telescope coupled to six on-chip spectrometers featuring kinetic inductance detectors (KIDs) to achieve high sensitivity, allowing for fast integration in dark atmospheric windows. The telescope receiver is cooled to ≈ 1.7 K by immersion in a superfluid helium bath and enclosed in a superfluid-tight shell with a meta-material anti-reflection coated silicon window. In addition to the optics and the spectrometer package, the receiver contains the magnetic shielding, the cryogenic segment of the spectrometer readout, and the sub-Kelvin cooling system. A three-stage continuous adiabatic demagnetization refrigerator (CADR) keeps the detectors at 100 mK while a 4He sorption cooler provides a 900 mK thermal intercept for mechanical suspensions and coaxial cables. We present the design of the EXCLAIM receiver and report on the flight-like testing of major receiver components, including the superfluid-tight receiver window and the sub-Kelvin coolers.
The PRime-focus Infrared Microlensing Experiment (PRIME) camera is part of the joint NASA-JAXA project in support of the spaceflight Roman Space Telescope project development. It is designed to accommodate the needs of the large-scale survey of the microlensing events in the Galactic bulge. The camera is placed in the prime focus of the 1.8-m telescope dedicated to this project. With four large-format infrared detectors, the instrument covers a field of view about 1.3 square degrees. Over the few years preceding and during the operations of the Roman Space Telescope, the instrument will be used for continuous monitoring of selected fields in the Galactic bulge for microlensing events and a number of other science programs of the consortium.
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) will constrain star formation over cosmic time by carrying out a blind and complete census of redshifted carbon monoxide (CO) and ionized carbon ([CII]) emission in cross-correlation with galaxy survey data in redshift windows from the present to z=3.5 with a fully cryogenic, balloon-borne telescope. EXCLAIM will carry out extragalactic and Galactic surveys in a conventional balloon flight planned for 2023. EXCLAIM will be the first instrument to deploy µ-Spec silicon integrated spectrometers with a spectral resolving power R=512 covering 420-540 GHz. We summarize the design, science goals, and status of EXCLAIM.
This paper describes a cryogenic optical testbed developed to characterize µ-Spec spectrometers in a dedicated dilution refrigerator (DR) system. μ-Spec is a far-infrared integrated spectrometer that is an analog to a Rowland-type grating spectrometer. It employs a single-crystal silicon substrate with niobium microstrip lines and aluminum kinetic inductance detectors (KIDs). Current designs with a resolution of R = λ/Δλ = 512 are in fabrication for the EXCLAIM (Experiment for Cryogenic Large Aperture Intensity Mapping) balloon mission. The primary spectrometer performance and design parameters are efficiency, NEP, inter-channel isolation, spectral resolution, and frequency response for each channel. Here we present the development and design of an optical characterization facility and preliminary validation of that facility with earlier prototype R=64 devices. We have conducted and describe initial optical measurements of R = 64 devices using a swept photomixer line source. We also discuss the test plan for optical characterization of the EXCLAIM R = 512 μ-Spec devices in this new testbed.
The current state of far-infrared astronomy drives the need to develop compact, sensitive spectrometers for future space and ground-based instruments. Here we present details of the μ-Spec spectrometers currently in development for the far-infrared balloon mission EXCLAIM. The spectrometers are designed to cover the 555 – 714 μm range with a resolution of R = λ/Δλ = 512 at the 638 μm band center. The spectrometer design incorporates a Rowland grating spectrometer implemented in a parallel plate waveguide on a low-loss single-crystal Si chip, employing Nb microstrip planar transmission lines and thin-film Al kinetic inductance detectors (KIDs). The EXCLAIM μ-Spec design is an advancement upon a successful R = 64 μ-Spec prototype, and can be considered a sub-mm superconducting photonic integrated circuit (PIC) that combines spectral dispersion and detection. The design operates in a single M=2 grating order, allowing one spectrometer to cover the full EXCLAIM band without requiring a multi-order focal plane. The EXCLAIM instrument will fly six spectrometers, which are fabricated on a single 150 mm diameter Si wafer. Fabrication involves a flipwafer-bonding process with patterning of the superconducting layers on both sides of the Si dielectric. The spectrometers are designed to operate at 100 mK, and will include 355 Al KID detectors targeting a goal of NEP ∼8 × 10−19 W/√ Hz. We summarize the design, fabrication, and ongoing development of these μ-Spec spectrometers for EXCLAIM.
A simulation-based framework for multifidelity uncertainty quantification is presented, which informs and guides the design process of complex, large-scale, multidisciplinary systems throughout their life cycle. In this framework, uncertainty in system models is identified, characterized, and propagated in an integrated manner through the analysis cycles needed to quantify the effects of uncertainty on the quantities of interest. This is part of the process to design systems and verify their compliance to performance requirements. Uncertainty quantification is performed through mean and variance estimators as well as global sensitivity analyses. These computational analyses are made tractable by the use of multifidelity methods, which leverage a variety of low-fidelity models to obtain speed-ups, while keeping the main high-fidelity model in the loop to guarantee convergence to the correct result. This framework was applied to the James Webb Space Telescope observatory integrated model used to calculate the wavefront error caused by thermal distortions. The framework proved to reduce the time required to perform global sensitivity analyses from more than 2 months to less than 2 days, while reducing the error in the final estimates of the quantities of interest, including model uncertainty factors. These technical performance improvements are crucial to the optimization of project resources such as schedule and budget and ultimately mission success.
The experiment for cryogenic large-aperture intensity mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation in windows from the present to z = 3.5. During this time, the rate of star formation dropped dramatically, while dark matter continued to cluster. EXCLAIM maps the redshifted emission of singly ionized carbon lines and carbon monoxide using intensity mapping, which permits a blind and complete survey of emitting gas through statistics of cumulative brightness fluctuations. EXCLAIM achieves high sensitivity using a cryogenic telescope coupled to six integrated spectrometers employing kinetic inductance detectors covering 420 to 540 GHz with spectral resolving power R = 512 and angular resolution ≈4 arc min. The spectral resolving power and cryogenic telescope allow the survey to access dark windows in the spectrum of emission from the upper atmosphere. EXCLAIM will survey 305 deg2 in the Sloan Digital Sky Survey Stripe 82 field from a conventional balloon flight in 2023. EXCLAIM will also map several galactic fields to study carbon monoxide and neutral carbon emission as tracers of molecular gas. We summarize the design phase of the mission.
The EXperiment for Cryogenic Large-aperture Intensity Mapping (EXCLAIM) is a cryogenic balloon-borne instrument that will map carbon monoxide and singly-ionized carbon emission lines across redshifts from 0 to 3.5, using an intensity mapping approach. EXCLAIM will broaden our understanding of these elemental and molecular gases, and the role they play in star formation processes across cosmic time scales. The focal plane of EXCLAIM's cryogenic telescope features six μ-Spec spectrometers. μ-Spec is a compact, integrated grating-analog spectrometer, which uses meandered superconducting niobium microstrip transmission lines on a single-crystal silicon dielectric to synthesize the grating. It features superconducting aluminum microwave kinetic inductance detectors (MKIDs), also in a microstrip architecture. The spectrometers for EXCLAIM couple to the telescope optics via a hybrid planar antenna coupled to a silicon lenslet. The spectrometers operate from 420{540 GHz with a resolving power R = λ/Δλ = 512, and employ an array of 355 MKIDs on each spectrometer. The spectrometer design targets a noise equivalent power (NEP) of 2 x 10-18 W√ Hz (defined at the input to the main lobe of the spectrometer lenslet beam, within a 9° half width), enabled by the cryogenic telescope environment, the sensitive MKID detectors, and the low dielectric loss of single-crystal silicon. We report on these spectrometers under development for EXCLAIM, providing an overview of the spectrometer and component designs, the spectrometer fabrication process, fabrication developments since previous prototype demonstrations, and the current status of their development for the EXCLAIM mission.
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne far-infrared telescope that will survey galactic formation history over cosmological time scales with redshifts between 0 and 3.5. EXCLAIM will measure the statistics of brightness fluctuations of redshifted cumulative carbon monoxide and singly ionized carbon line emissions, following an intensity mapping approach. EXCLAIM will couple all-cryogenic optical elements to six μ-Spec spectrometer modules, operating at 420-540 GHz with a spectral resolution of 512 and featuring microwave kinetic inductance detectors. Here, we present an overview of the mission and its development status.
This work describes the optical design of the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM). EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide (CO) at redshifts z<1 and ionized carbon ([CII]) at redshifts z = 2.5-3.5 to probe star formation over cosmic time in cross-correlation with galaxy redshift surveys. The EXCLAIM instrument will observe at frequencies of 420--540 GHz using six microfabricated silicon integrated spectrometers with spectral resolving power R = 512 coupled to kinetic inductance detectors (KIDs). A completely cryogenic telescope cooled to a temperature below 5 K provides low-background observations between narrow atmospheric lines in the stratosphere. Off-axis reflective optics use a 90-cm primary mirror to provide 4.2' full-width at half-maximum (FWHM) resolution at the center of the EXCLAIM band over a field of view of 22.5'.
KEYWORDS: Systems modeling, James Webb Space Telescope, Thermal modeling, Monte Carlo methods, Observatories, Integrated modeling, Analytical research, Performance modeling, Space telescopes
A simulation-based systems engineering framework is defined to design, optimize and simulate complex, large scale systems under uncertainty through integrated models encompassing multiple disciplines such as, for example, structural-thermal-optical. A model's input parameter uncertainties are rigorously quantified upstream of the model through literature reviews, experiments or elicitation from subject matter experts and then propagated through the model to determine their influence on specific quantities of interest requested in output. A variance-based global sensitivity analysis is used to identify and rank the critical system parameters, based on their contribution to the variance of the quantities of interest. These parameters can then be targeted by additional research through optimal parameter inference experiments in order to reduce their variability. By so doing, one incorporates uncertainty in the model and updates the model iteratively as new parameter information becomes available. This process increases one's knowledge about the system, its subcomponents and all of their mutual interactions, and represents a crucial commodity when important design decisions are to be made. When applied early in a project's life-cycle, it can potentially reduce mission costs related to resources (e.g., mass or power) and processes (e.g., design, verification and validation). As a case study, this paper presents results from the application of this framework to the integrated model of the James Webb Space Telescope, used to ultimately revise the model uncertainty factors applied to nominal temperature predictions for the benchmark hot-to-cold slew thermal analysis case.
KEYWORDS: Systems modeling, Thermal modeling, James Webb Space Telescope, Data modeling, Model-based design, Optimization (mathematics), Mathematical modeling, Thermal engineering, Optical instrument design, Space telescopes
Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.
The complex dielectric function enables the study of a material's refractive and absorptive properties and provides information on a material's potential for practical application. Commonly employed line shape profile functions from the literature are briefly surveyed and their suitability for representation of dielectric material properties are discussed. An analysis approach to derive a material's complex dielectric function from observed transmittance spectra in the far-infrared and submillimeter regimes is presented. The underlying model employed satisfies the requirements set by the Kramers-Kronig relations. The dielectric function parameters derived from this approachtypically reproduce the observed transmittance spectra with an accuracy of < 4%.
μ-Spec is a compact submillimeter (~ 100 GHz - 1:1 THz) spectrometer which uses low loss superconducting microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a diffraction grating spectrometer onto a single chip. We have already successfully evaluated the performance of a prototype μ-Spec, with spectral resolving power, R=64. Here we present our progress towards developing a higher resolution μ-Spec, which would enable the first science returns in a balloon flight version of this instrument. We describe modifications to the design in scaling from a R=64 to a R=256 instrument, as well as the ultimate performance limits and design concerns when scaling this instrument to higher resolutions.
The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (μ-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 μm wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a ~10 cm2 silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for μ-Spec is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. Two point designs with resolving power of 260 and 520 and an RMS phase error less than ~0:004 radians were developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.