In this paper, a dual-parameter measurement scheme based on an etched thin core fiber modal interferometer (TCMI) cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. The magnetic fluid cladding surrounding the TCFMI was used as a magnetic field-to-refractive index transducer. To depress the temperature influence on the performance of such sensors, an FBG was inscribed in the leading SMF of the TCFMI. Experimental results show that, the reflection of the FBG has a magnetic field intensity and temperature sensitivities of -0.017 dB/Oe and 0.133 dB/℃, respectively, while the Bragg wavelength of the FBG only has a temperature sensitivity of 13.23 pm/℃. By monitoring the reflection wavelength and intensity of the Bragg mode, the intensity of the magnetic field and the temperature variance can be measured, which enables magnetic field sensing under strict temperature environments. Meanwhile the reflective sensing probe is more compact and practical for applications in hard-to-reach conditions.
In this paper, we present a novel fiber-optic open-cavity Fabry-Perot interferometer (FPI), which is specially designed for microfluidic refractive index (RI) sensing. An etching Side-hole fiber (SHF) was sandwiched between in two single-mode-fibers (SMF) and then a cavity was opened up by chemical etching method in the SHF. The minute order of the etching process endow such FPIs with low cost and ease of fabrication. For further microfluidic sensing test, the FPI was integrated with a cross microfluidic slit that was fabricated through photolithography. The refractive index response of the FPI was characterized using sodium hydroxide solution with RI range from 1.3400 to 1.3470. Experimental results show that FPIs with different length of open-cavity have the similar liner RI response with different RI sensitivities. The optimal RI sensitivity of more than 1138 nm/RI can be achieved with open-cavity length of 56 μm. The temperature response was also investigated, which shows that FPIs exhibit a very low temperature cross-sensitivities of 4.00 pm/ °C and 1.95 pm/ °C corresponding FPIs with cavity length of 123 μm and 56 μm, respectively. Such good performance renders the FPI a promising in-line microfluidic sensor for temperature-insensitive RI sensing.
In this paper, a novel optical fiber sensor based on an enlarged-taper tailored fiber Bragg grating (FBG) is proposed and experimentally demonstrated for the measurement of relative humidity. The enlarged-taper works as a multifunctional joint that not only excites cladding modes but also recouples the cladding modes reflected by the FBG back into the leading single mode fiber. Due to the fact that cladding modes have a strong evanescent field penetrating into the ambient medium, the intensity of the reflected cladding modes is greatly influenced by the refractive index (RI) of the ambient medium. Polyvinyl alcohol (PVA) film is plated on the fiber surface by dip-coating technique, as a humidity-to-refractive index transducer, whose RI variance from 1.49 to 1.34 when the ambient humidity increases from 20%RH to 95%RH. The relative humidity response of the sensing structure is investigated in our home-made humidity chamber with a commercial hygrometer. By monitoring the intensity of the reflected cladding modes, the RH variance can be demodulated. Experimental results show that RH sensitivity depends on the RH value, and a sensitivity up to 1.2 dB/%RH can be achieved within the RH range of 30-90%. A fast and reversible time response has also been investigated. Such a probe-type and reusable fiber-optic RH sensor is a very promising technology for biochemical sensing applications, e.g., breath analysis, chemical reaction monitoring.
We present a Fabry-Perot interferometer for microfluidic flow rate sensing. The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co2+-doped optical fiber cavity, acting as a “hot-wire” sensor. A microfluidic channel made from commercial silica capillary was integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system.
The fabrication and characterization of a highly sensitive DNA biosensor based on thin-core fiber modal interferometer
(TCFMI) are presented. The TCFMI is made by using a thin-core fiber (TCF) with core diameter of ~3.0 μm and etched
by using Hydrofluoric (HF) acid solution for sensitivity enhancement. A thin layer of polymer (PLL, poly-L-lysine) was
coated on the sensor surface and experimentally demonstrated for the detection of hybridization of deoxyribonucleic acid
(DNA).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.