As the most important characteristic gas, carbon monoxide (CO) can be used for early detection of coal spontaneous combustion in mine goafs. Conventional gas analysis system for coal mine combustion monitoring is chromatography- based gas tubing bundles system, which suffers from long time delay. In this report, a sensitive and stable CO monitoring system was developed by using a distributed feedback (DFB) laser operating at 2.33 μm and a Herriott-type multi-pass gas cell with a 20-m optical length, taking advantage of the in-situ monitoring, excellent accuracy and simple structure available from direct absorption spectroscopy. The detection accuracy of system was about ±0. 2 ppm when as low as 1 ppm CO gas was detected. And data monitored can be used to determine that the detection limit of system was about 0.2 ppm. Further, a long-term continuous monitoring evaluation has clearly demonstrated the long-term stability and reliability of the monitoring system. The results obtained have validated the potential use of such a CO monitoring system in a practical monitoring application, such as the coal spontaneous combustion monitoring.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.