KEYWORDS: Interference (communication), Signal detection, Signal to noise ratio, Modulation, Laser communications, Spectrum analysis, Signal processing, Sensors, Satellites, Fourier transforms
With the development of the information age, the transmission rate and transmission capacity of information continue to increase. As a wireless communication method to achieve high bit rate communication, space laser communication plays an increasingly obvious role in global communications. In the current space laser communication system, the optical communication terminal uses a detector to detect the position of the received optical signal, and then the servo mechanism on it performs facula tracking. However, when a four-quadrant detector (4QD) is used to detect optical signal, the received optical signal generally contains three main types of noise, which are background radiation noise, shot noise and thermal noise. These three kinds of noise can be equivalent to Gaussian white noise. In this paper, a single-frequency cosine signal is used to modulate the intensity of the optical signal received by the 4QD, and then the modulated optical signal is detected by a spectrum analysis method based on the cross-correlation algorithm. This method reduces the relative error of the spectral line amplitude when the SNR is -5dB from 2.23% to 0.88%, and reduces the relative error of the spectral line amplitude when the SNR is -20dB from 17.6% to 5.49%. Therefore, this method can well suppress Gaussian white noise and improve the detection accuracy of modulated optical signal under extremely low SNR conditions.
In the application of space satellite turntable, the design of balance wheel is very necessary. To solve the acquisition precision of Brushless DC motor speed is low, and the encoder is also more complex, this paper improves the original hall signal measurement methods. Using the logic device to achieve the six frequency multiplication of hall signal, the signal is used as speed feedback to achieve speed closed-loop control and improve the speed stability. At the same time, in order to prevent the E.M.F of BLDC motor to raise the voltage of the bus bar when reversing or braking, and affect the normal operation of other circuit modules, the analog circuit is used to protect the bus bar voltage by the way of energy consumption braking. The experimental results are consistent with the theoretical design, and the rationality and feasibility of the frequency multiplication scheme and bus voltage protection scheme are verified.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.